Abstract:
To provide sufficient sensitivity, spectral resolution and speed of measurement for field environmental measurements in a portable spectroradiometer, a silicon photodiode receives light: (1) having a bandwidth in the range of between 2 and 15 nm (nanometers) from a pivotable concave holographic diffraction grating within the wavelength range of between 250 and 1150 nm at a scanning rate in the range of 20 to 100 nm per second; (2) having stray light of high intensity and undesired frequencies and the shorter wavelength harmonics of the selected frequency range blocked by filters; and (3) having flux of at least 10 microwatts per square meter of diffuser plate for each nanometer of bandwidth. Automatic electrical zeroing is obtained by blocking all light once at the beginning of each scan, obtaining an electrical drift-related signal and using the drift signal to adjust the measured signal during the scan. Several different sensing interfaces can be used, including a quartz, light fiber probe having at least a 50% packing density and a cone angle of at least 24 degrees. The data and the programming storage is at least 30K bytes but the instrument uses no more than watts of power when the instrument is not scanning.
Abstract:
A tiny and portable micro-spectrometer deployable in a bullet-like form that is inexpensive to the point that it can even be disposable is described. The device is based on the micro-spectrometer that uses the Fresnel diffraction principle that allows a tiny implementation with a nanometer resolving power of spectral signal. A bullet-like micro-spectrometer has an integration of a super capacitor as a power source, a charging coil for the super capacitor, an LED or laser diode light source and driver, an analog to digital converter (ADC) circuit, and a telemetry system with antenna string. An LED or laser diode runs in a burst mode to generate deep or vacuum UV to excite target material. When the excited state of target material undergoes a singlet or triplet transition, this transition process yields fluorescence or luminescence which is a material-dependent. The micro-spectrometer senses and uses this spectral emission from material to identify the spectral signature of the targeted material. The data is converted by an ADC and transmitted to a receiving station.
Abstract:
A portable optical spectroscopy device is disclosed for analyzing gas samples and/or for measurement of species concentration, number density, or column density. The device includes a measuring chamber with the gas sample to be analyzed, a light source with at least one laser diode for emitting a laser beam along a light path running through the measuring chamber at least in certain regions, means for modulating the wavelength of the light beam emitted by the light source, and an optical detector device having a first optical detector and at least one second optical detector. At least a part of the light emitted by the laser diode is detected after the light has passed through the measuring chamber m-times, and at least a part of the light emitted by the laser diode is detected with the at least one second optical detector after the light has passed through the measuring chamber n-times, where n>m applies.
Abstract:
A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.
Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A portable system and method for detecting drug materials. A portable system may comprise at least one collection lens for collecting a plurality of interacted photons, a tunable filter for filtering the photons, and a SWIR detector for generating at least one SWIR data set representative of a first location comprising an unknown sample. A processor may analyze the SWIR data set to associate the unknown material with a known drug material. A method may comprise collecting a plurality of interacted photons, filtering the interacted photons into a plurality of wavelength bands, detecting the filtered photons to generate a SWIR data set and analyzing the SWIR data set to associate an unknown material with a known drug material.
Abstract:
In an embodiment, an apparatus includes a module assembly and a main assembly. The module assembly includes a module assembly housing, a first face plate and an analysis unit attached to the first face. The main assembly includes a main assembly housing, a second face plate and an engine unit rigidly attached to the second face plate. The engine unit generates a light that passes to the analysis unit via a first lens assembly and a second lens assembly. The first lens assembly is attached to the first face plate and the second lens assembly is attached to the second face plate. The module assembly when attached to the main assembly causes the first and second face plates to act as a single mechanical unit that moves independent of movement of the module assembly housing and/or the main assembly housing.
Abstract:
A method and a portable device for assessing the occurrence of an agent in a sample. A sample is illuminated with photons emanating from a portable device to produce photons reflected, emitted, or absorbed from a set of multiple points in the sample having a defined geometric relationship. The portable device is used to simultaneously illuminate the sample and analyze the photons reflected, emitted, or absorbed from the set of multiple points using spectroscopic methods, including infrared, fluorescence, and UV/visible. The agent assessed may include a hazardous agent, a chemical agent, a biological agent, a microorganism, a bacterium, a protozoan, a virus, and combinations thereof.
Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.