Abstract:
A sliding joint for motor vehicles, having an inner race which includes inner running grooves, an outer race which includes outer running grooves, a cage, and balls. The inner running grooves are constructed parallel to each other in the axial dimension and include a displacement segment and a functional segment, and the outer running grooves are likewise constructed parallel to each other in the axial dimension and also include a displacement segment and a functional segment.
Abstract:
A fixed type constant velocity universal joint secures smooth rotation and reduces a load on a cage even at a large operating angle and when bearing large torque. The universal joint includes an outer joint member having an inner spherical surface in which track grooves are circumferentially formed in an axial direction and an inner joint member having an outer spherical surface in which track grooves paired with the track grooves of the outer joint member are circumferentially formed in the axial direction and multiple outer spherical surface portions circumferentially arranged. Balls are interposed between the track grooves of the outer and inner joint members for transmitting torque. A cage is interposed between the inner spherical surface and the outer spherical surface for retaining the balls. A spherical surface angle of the outer spherical surface on a joint opening side is set to 12.5° or more.
Abstract:
A wheel bearing device, a method of assembling a wheel bearing device, an assembly configured by the wheel bearing device and a drive shaft, and a method of assembling the assembly, in which the wheel bearing device eliminates a nut tightening operation, is capable of reducing costs, and has a projection and recess mating structure that can firmly connect an outer joint member and a hub. Axial direction load is applied to a stepped surface is provided on an outer diameter surface of an outer joint member. A projection that extends in the axial direction and is provided on one of a stem shaft of the outer joint member and an inner diameter surface of a hole section of a hub is press-fitted into a partner member along the axial direction, As a result, a recess that is in close contact with the projection over an overall mating contact area is formed in the partner member, thereby configuring a projection and recess mating structure.
Abstract:
A fixed type constant velocity universal joint is capable of securing a ball groove depth larger than conventional products and enhancing performance without an increase in a “force of pushing out balls in an axial direction”, the force having an influence on joint efficiency. In the fixed type constant velocity universal joint, a center of each of a plurality of guide grooves of an outer joint member and a center of each of a plurality of guide grooves of an inner joint member are offset with respect to a spherical surface center of an inner surface and a spherical surface center of an outer surface. A ratio (F/PCR) of an offset amount F to a length of a segment (PCR) ranges from 0.045 to 0.065. A ratio (αt/α) when an angle α is the total of an angle αt and an angle αc ranges from 0.45 to 0.65.
Abstract:
Constant-velocity fixed joints may comprise an outer joint part with outer ball tracks, an inner joint part with inner ball tracks, torque transmitting balls which are guided in pairs of tracks each formed of an outer and an inner ball track, and a ball cage with circumferentially distributed cage windows in which the balls are received. Here, the balls are held in a common central plane and are guided onto the bisecting plane when the joint is deflected. Constant-velocity rotary joints of this type are known as Rzeppa fixed joints (RF) or as undercut-free fixed joints (UF).
Abstract:
A constant velocity fixed joint. The center line (M22) of the outer ball tracks (22) towards a first side (S1) departs, radially inwardly, a reference radius centered in the point of intersection between a perpendicular line on tangents (T22) at the center line (M22), and the longitudinal axis (L12). The center line (M23) of the inner ball tracks (23) towards a second side (S2) departs, radially inwardly, a reference radius centered in the point of intersection of a perpendicular line on the tangent at the center line (M23), and the longitudinal axis (L13). In the outer joint part, from the joint center plane (EM) to the second side (S2), the center line (M22) moves beyond the reference radius radially outwardly. In the inner joint part (13), from the joint center plane (EM) to the first side (S1), the center line (M23) moves beyond the reference radius, radially outwardly.
Abstract:
Wedge angles are formed between mutually facing central track-groove portions (11b, 12b, 21b, 22b) of an outer joint member (1) and an inner joint member (2). Track grooves (11, 12) provided to the outer joint member (1) and track grooves (21, 22) provided to the inner joint member (2) include a first pair of track grooves (11, 21) respectively including the central track-groove portions (11b, 21b) forming therebetween the wedge angle (α) opening to an opening side of the outer joint member (1) under a state in which an operating angle is 0°, and a second pair of track grooves (12, 22) respectively including the central track-groove portions (12b, 22b) oppositely forming therebetween the wedge angle (β) opening to an inner-end side of the outer joint member (1) under the state in which the operating angle is 0° . Both the first track groove (11) and the second track groove (12) of the outer joint member (1) include opening-side track-groove portions (11c, 12c) connected respectively to the central track-groove portions (11b, 12b) directly, each of the opening-side track-groove portions (11c, 12c) being formed in such a shape as to be free from an undercut toward the opening side. Accordingly, it is possible to manufacture at low cost a high-efficient fixed type constant velocity universal joint which involves less torque loss.
Abstract:
A direct torque flow constant velocity joint connector includes an outer joint part, and inner joint part, a cage and a plurality of balls. The outer joint part includes outer ball tracks. The inner joint part includes inner ball tracks and a rotational axis, wherein the inner joint part has a face spline oriented about the rotational axis. The plurality of balls are provided in the cage and engage the inner and outer ball tracks of the respective inner and outer joint parts, thereby allowing torque transmission by way of the face splines. Also provided is a direct torque flow constant velocity joint connection.
Abstract:
A ball-and-socket joint comprising an inner hub (1) and an outer hub (6) inside which tracks are disposed that are associated with each other in pairs. At least one ball is arranged in each track in order to transmit torque between the inner hub and the outer hub. The ball-and-socket joint further includes at least one diaphragm which seals the outer hub with respect to a joining element that can be connected in a torsion-proof manner to the inner hub. The outer hub is provided with a metallic interior element encompassing the tracks, a dampening element which embraces the interior element in at least some areas, and a cap that embraces the damping element in at least some areas in order to connect the outer hub to a driving part or a part to be driven. The damping element is made of a material having a modulus of elasticity lower than the modulus of elasticity of the metallic material of the interior element and/or the cap of the outer hub while being greater than the modulus of elasticity of the diaphragm.
Abstract:
The present invention provides a constant velocity universal joint component and a manufacturing method thereof capable of achieving increased strength without significant procedural changes, and that can contribute to size reduction and weight reduction. In the constant velocity universal joint component of the present invention, a sharp-angled portion 15 is formed by machining after cold plastic working is applied. A carburization process is then performed in which surface carbon concentration of 0.45 mass % to less than 0.60 mass % is obtained. Quenching is then performed. High-frequency induction hardening is subsequently performed.