摘要:
A thin film of ignition inhibitor is applied uniformly to a rocket propelt grain which may be large and have a complex shape. The film is applied by condensation and polymerization of a vaporized monomer to which the grain is subjected. The monomer is prepared by thermally cracking the dimer of paraxylylene or a halogenated paraxylylene derivative.
摘要:
A dual explosive charge is described that simultaneously enhances blast and fragmentation characteristics of the charge, including an inner driven charge of a non-ideal explosive surrounded by an outer charge sleeve of a more nearly ideal explosive, detonation of the outer charge resulting in an extremely high temperature, high pressure environment that accelerates reaction kinetics in the inner charge, resulting in enhanced blast and fragmentation performance of the explosive charge.
摘要:
A robust polyurethane liner is disclosed for solid propellant rocket motors which is insensitive to large variations in stoichiometry, exhibits increased cohesive strength and, when used in combination with a unique two coat (wet coat) liner process described below, modifies the ballistic properties of the adjacent interfacial propellant layer. The liner compositions include a polymeric binder having a plurality of reactive hydroxyl functional groups and a curing agent having a plurality of reactive isocyanate functional groups. The quantity of binder and curing agent is selected such that the NCO/OH ratio is in the range from 1.5 to 4.5. Diisocyanate curing agents are particularly useful. A bonding agent, such as a polyfunctional aziridine compound, is typically present in the liner composition in an amount ranging from about 3% to about 5%, by weight. An oligomer catalyst is included in the liner composition in an amount ranging from about 15% to about 50%, by weight. Diammonium phosphate ((NH.sub.4).sub.2 HPO.sub.4) functions as an oligomer catalyst and as a ballistic modifier to inhibit propellant burn rate when the liner is cured concurrently with the propellant. A colorant, such as rhodamine B, may optionally be included to assist in determining coverage or thickness of the liner coating.
摘要:
A multi-layer propellant and a method for making the same is provided, in ich the propellant has at least one slow burning formulation and at least one fast burning formulation, such that the ratio of these burning rates is at least 2:1. The propellant produces an impetus of at least 1300 Joules/gm. The preferred binder is a high energy oxetane thermoplastic elastomer. The preferred slow burning formulation employs RDX, while the preferred fast burning formulation employs CL-20. The two formulations are formed separately, such as in layers that are then fused, using the bonding strength of the binder. The shape may be any shape that is useful in munitions and may include one or many layers of each burning rate. Preferred shapes include a multi-layered propellant with one slow burning formulation on top and a bottom layer of the fast burning formulation. The layers may be formed from ribbons, discs, cones, truncated cones and partial spheres. The amount of binder in each formulation should be sufficient to provide a uniformly dispersed oxidizer throughout the layer. Preferred amounts of binder range from about five percent to about thirty percent by weight, based on the total weight of the propellant.
摘要:
There is disclosed a propellent having a deterred burn rate. The propellent is a particulate containing an energetic binder base and a thermoplastic burn deterrent. The energetic binder has in impetus (energy) in excess of 200,000 foot pounds per pound (mass) and the thermoplastic burn deterrent is both a solid at room temperature and soluble in an organic solvent. The burn deterrent is gradationally dispersed within the particulate with the greatest concentration of burn deterrent at the particulate periphery.
摘要:
The present invention is directed to the encapsulation of pyrophoric materials in a high temperature resistant membrane having at least one perforation which allows air to contact the pyrophoric material. By controlling the accessibility of the pyrophoric material to the surrounding air, it is possible to reduce the kinetics of the oxidation reaction without affecting the thermodynamics of the reaction. This results in a product that demonstrates a lower peak temperature, longer dwell time at the lower temperature and, in most cases, an increase in the total heat energy output in comparison to an identical pyrophoric material that is not so encapsulated.
摘要:
Compositions and methods for increasing the storage life of a propellant grain by reducing the rate of decomposition of its nitrate ester components. A nitrate ester stabilizer is placed in a layer adjacent to a nonburning surface of the propellant grain. The stabilizer migrates from the layer into the grain's nonburning surface to provide additional stabilization for the entire grain, especially portions of the grain adjacent to the protected nonburning surface.
摘要:
Combustible cartridge shells have cylindrical walls formed of combustible material. The walls comprise one or more wraps or windings of textile fibers, which are bound together with bonding agents having propellant charge characteristics. The bonding agents comprise either a mixture of polymers and explosives with decomposition temperatures above 180.degree. C. or a mixture of polymeric nitro-aromatic compounds which have two or more nitro groups per aromatic nucleus and also have a decomposition temperature above 180.degree. C. Mixtures of these two bonding agents may also be used to form the cylindrical wall of the combustible cartridge shell. The cartridge shells have inherently stable walls with a high mechanical resistance and are unaffected by changes in temperature up to 240.degree. C. Advantageously, these shells burn practically free of any residuals.
摘要:
The trimer of 1,6-hexanediisocyanate, which has the chemical name in acconce with (International Union of Pure and Applied Chemistry) (IUPAC) nomenclature of 7-aza-8-oxo-7[1-isocyanato-6-oxohexyl]pentadecanediisocyanate, is employed in a method of chemical bonding of solid propellant grains to the internal insulation of an interceptor motor. Both the propellant composition and the insulation are chemically reactive with the trimmer identified hereinabove. The method comprises providing a solid propellant rocket motor case having the internal insulation installed therein. Following degreasing of the insulation outer surface, the trimer identified hereinabove is spray coated onto the insulation, and the solid propellant composition is placed onto the trimer. A chemical bond is formed between the propellant and the trimer and the insulation to achieve the chemical bonding of an isocyanate curable solid propellant composition to the internal insulation. The insulation employed in the preferred embodiment is formulated with ethylene-propylene-diene monomer prepolymer, peroxide-cured, and plasticized with 9% dioctyl sebacate. The propellant composition is cast onto the spray coated insulation surface where the chemical insulation-to-polyisocyanate-to-propellant bond is achieved which shows superior tensile, shear, and peel strength when compared to conventional insulation-liner-propellant bonding by prior art.
摘要翻译:1,6-己二异氰酸酯的三聚体,其化学名称符合(International Union of Pure and Applied Chemistry)(IUPAC)7-氮杂-8-氧代-7 [1-异氰酸基-6-氧己基]十五碳二异氰酸酯的命名法 用于将固体推进剂颗粒与拦截器电机的内部绝缘体化学粘合的方法。 推进剂组合物和绝缘体都与上文所确定的修剪剂发生化学反应。 该方法包括提供其中安装有内部绝缘体的固体推进剂火箭发动机壳体。 在绝缘外表面脱脂之后,将上述鉴定的三聚体喷涂在绝缘体上,并将固体推进剂组合物置于三聚体上。 在推进剂和三聚体之间形成化学键,并且形成绝缘体以实现异氰酸酯可固化的固体推进剂组合物与内部绝缘体的化学键合。 在优选实施方案中使用的绝缘体用乙烯 - 丙烯 - 二烯单体预聚物配制,过氧化物固化,并用9%癸二酸二辛酯增塑。 将推进剂组合物浇铸到喷涂的绝缘表面上,其中与现有技术的传统绝缘衬垫推进剂粘合相比,实现了与绝缘 - 聚异氰酸酯 - 推进剂结合的化学绝缘 - 聚异氰酸酯 - 推进剂粘合,其显示出优异的拉伸,剪切和剥离强度。
摘要:
A flame inhibitor coating for application to those surfaces of a solid prllant grain in a rocket motor where burning is not desired such as the aft end of a perforated propellant grain which includes a barrier layer of a mixture of amine silane, a trialkoxypropylsilylamino prepolymer, and diglycidylether of polypropylene glycol, an epoxy applied to the grain surface and allowed to cure to a polysiloxane layer, and a flame inhibitor layer applied over the barrier layer consisting of a mixture of hydroxyl terminated polybutadiene and dimeryl diisocyanate with flake aluminum which is applied over the barrier layer and allowed to cure. The barrier layer prevents migration of nitrate esters from the solid propellant grain to the flame inhibitor layer thus preventing peeling and reduction of flame inhibiting properties. The polysiloxane barrier layer is also useful in itself as a flame inhibitor and can also be employed between the insulator/liner of the rocket motor and the solid propellant grain.