Abstract:
A method and equipment for determining a sequence of railcars connected to a locomotive on a train, wherein a control device of the locomotive is connected to railcars including a control device via a brake pipe, wherein the control device of the locomotive and the control devices of the railcars may exchange messages via a fast wireless network, wherein the method and equipment transmit a unique identification code via a slow network constituted by the brake pipe, transmit over a fast network messages indicative of a current state of the transmission carried out via the slow network, determining a time delay between the received state of transmission and a measured state of transmission and generating and sending associated report data.
Abstract:
Described herein are techniques for determining motion characteristics of trains traveling along a train track. In some embodiments, a processor may determine an estimated position of a train using an observed position obtained using one or more UWB antennas and an observed position obtained using one or more GNSS receivers. In some embodiments, a processor may access information specifying a geometry of a train track and determining the position of a train along the train track using an observed position determined using one or more UWB antennas and/or GNSS receiver(s) and the information specifying the geometry of the train track. In some embodiments, a processor may determine estimated positions of a train using the geometry of the train track and at least one observation of the train obtained using one or more positioning devices and select the position of the train from among the estimated positions.
Abstract:
An asset identification and tracking system includes one or more monitoring units configured to monitor at least one designated area. Each of the monitoring units includes an imaging device and one or more processors. The imaging device is configured to generate image data depicting one or more mobile assets that move through the at least one designated area. The one or more processors are operably coupled to the imaging device and configured to analyze the image data to detect and decipher one or more identifiers that are displayed on a particular mobile asset of the one or more mobile assets that move through the at least one designated area. The one or more processors are further configured to generate a detection message that includes the one or more identifiers for communication to an asset control system.
Abstract:
The present disclosure generally relates to work block encroachment warning systems for providing protection for rail workers working in a mobile or fixed work block. For example, a vehicle (V)-aware unit installed on a moving rail vehicle and a work block limit encroachment unit mounted on a railroad may wirelessly communicate with each other to determine a distance between them. When a vehicle is moving toward an occupied work block, the distance may be used to identify potential hazards.
Abstract:
A central device includes an information replacing unit. When the information replacing unit detects, on the basis of contact information acquired from an electric coupler provided in a coupled vehicle in a formation B having a train-information management device that manages vehicle information in accordance with the Ethernet® protocol, that a formation A that includes a train-information management device that manages vehicle information in accordance with the ARCNET protocol is coupled to the formation B, then the information replacing unit replaces vehicle information from the formation A with vehicle information in accordance with the Ethernet® protocol; outputs the replaced vehicle information to the formation B; replaces the vehicle information from the formation B with the vehicle information in accordance with the ARCNET protocol; and outputs the replaced vehicle information to the formation A.
Abstract:
A visual diagnostic system for a rail vehicle having multiple assets is disclosed. The visual diagnostic system may have a data interface configured to receive a message from a wayside unit. The message may indicate that at least one of the multiple assets is experiencing an issue. The data interface may also be configured to receive geo-information and configuration-information. The system further includes a controller configured to determine, from the geo-information and the configuration-information, a geographic location of each of the multiple assets. The controller is further configured to determine, from the received message and the determined geographic location of each of the multiple assets, which of the multiple assets is experiencing the issue. The controller is further configured to render for display in a user interface a visual representation of the rail vehicle with an identification of the at least one of the multiple assets experiencing the issue.
Abstract:
A method includes obtaining data relating to operation of a first vehicle in a vehicle consist that includes the first vehicle and a second vehicle communicatively coupled with each other by a communication channel. The first vehicle includes a first electronic component performing functions for the first vehicle using the first data. The method also includes communicating the first data over the communication channel from the first vehicle to a second electronic component disposed onboard the second vehicle responsive to the first electronic component being unable to perform the one or more functions for the first vehicle using the first data. The method further includes performing the functions of the first electronic component with the second electronic component using the first data that is received from the first vehicle.
Abstract:
A train information management apparatus includes a first system central device that generates first train control information for a car-mounted device in every predetermined period and a second system central device that generates second train control information starting from the time at which the time obtained by multiplying the predetermined period with 1/2 has elapsed from the time point when the first train control information is transmitted. The first system central device generates a first packet every time the first train control information is generated and alternately transmits a first packet to a first system trunk transmission line and a second system trunk transmission line. The second system central device generates and transmits a second packet almost in the same manner except that the second packet is transmitted to a trunk transmission line on the opposite side of the trunk transmission line to which the first packet was transmitted.
Abstract:
A method is disclosed for determining the positional relationship between a locomotive in a consist and a tender car in the consist. The method may include transmitting a signal from a locomotive controller to the tender car. The signal may be processed at the tender car in a manner uniquely indicative of one end of the tender car. A locomotive controller associated with the locomotive may receive an indication of an effect of the signal processing, and use the indication to establish the positional relationship between the locomotive and the one end of the tender car. The locomotive controller associated with the locomotive may transmit a signal indicative of fuel requirements and including the positional information to a controller associated with the tender car. The tender car controller may transfer fuel from the one end of the tender car to the locomotive.
Abstract:
Train position is sensed using a position sensing unit having plurality of position sensors arrayed in the direction of train travel. The sensors respond to the presence and absence of a detection element on each train car, the detection element being longer than the spacing between adjacent position sensors. A confirmed count of a train car passing the position sensing unit requires detection of a series of related position sensor activations and deactivations. Alternately, the position sensing unit senses data tags on the train cars, reading unique identifiers therefrom. A list of identifiers corresponding to the car order is stored and compared to the identifiers read in order to determine train position.