摘要:
A spectroscopic instrument includes a first optical component for spatial spectral splitting of a polychromatic beam of light impinging onto the first optical component, an objective, which routes various spectral regions of the split beam of light onto differing spatial regions, and a sensor, situated downstream of the objective in the beam path of the beam of light, with a plurality of light-sensitive sensor elements. The sensor elements are arranged in the beam path of the split beam of light in such a manner that each sensor element registers the intensity of a spectral sector of the beam of light and the medians of the spectral sectors are situated equidistant from one another in the k-space, where k denotes the wavenumber.
摘要:
An interface unit for positioning an object to be irradiated in relation to a radiation source has at least one first positioning surface for positioning the interface unit in relation to the radiation source, and a second positioning surface for bearing on the object to be irradiated. The interface unit provides a path, which passes through the second positioning surface, for the radiation from the radiation source. According to the invention, the interface unit comprises an integrally produced interface body which forms both the at least one first positioning surface and the second positioning surface. The interface body is preferably produced from a plastic material by an injection compression molding method, in order to achieve the desired high manufacturing accuracy.
摘要:
A simulator to be used in ophthalmological measurements includes a display apparatus and a control device. The control device is adapted to control the display apparatus in such a manner that the display apparatus displays an image that is adapted to simulate the arrangement of a pupillary midpoint relative to a reference structure.
摘要:
An artificial eye model for use in ophthalmological measurements exhibits a simulation of at least one eye structure, for instance of a cornea or of a crystalline lens. In accordance with the invention the simulation possesses fluorescent properties. In this way, a beam expansion as a result of multiple scattering in the case of scattered-light-based photographic recordings can be avoided. Instead of this, a sharp-contour imaging of the simulated eye structures is made possible.
摘要:
A device for machining the human cornea with focused laser radiation includes controllable components for setting the location of the radiation focus, a control computer for controlling these components, and also a control program for the control computer. The control program contains instructions that have been designed to bring about, upon execution by the control computer, the generation of incisions in the cornea in accordance with a predetermined incision figure, the incision figure defining a corneal bed, a flap situated on the bed and also at least one tissue strip situated in the region of the peripheral edge of the flap between the bed and the flap and extending along the edge of the flap. After the flap has been folded away, the tissue strip has to be removed and enables a creaseless post-ablative close fitting of the folded-back flap against the surface of the bed. In this manner, microstriae which may impair the visual capacity can be avoided.
摘要:
A system for refractive ophthalmological surgery, in particular LASIK, has—in addition to the ablation laser and, where appropriate, further optical guidance means (18, 30)—a device (34) for optical coherence tomography as an integrated component, in order to make available results of measurement acquired with this device either for the purpose of representation on a display device and/or for the purpose of control of the ablation.
摘要:
An artificial eye model for use in ophthalmological measurements exhibits a simulation of at least one eye structure, for instance of a cornea or of a crystalline lens. In accordance with the invention the simulation possesses fluorescent properties. In this way, a beam expansion as a result of multiple scattering in the case of scattered-light-based photographic recordings can be avoided. Instead of this, a sharp-contour imaging of the simulated eye structures is made possible.
摘要:
In certain embodiments, a laser device for laser processing of an eye comprises a source of a pulsed laser beam, a detector system that photodetects partial beams generated from the laser beam, and a control unit that evaluates the detection signals. A first detection element of the detector system provides a first detection signal based on single-photon absorption. A second detection element provides a second detection signal based on two-photon absorption. The control unit puts the measured signal strengths of the two detection signals into a ratio to one another. Variations in the resulting ratio value may be traced back to variations in the pulse duration and/or wave front of the laser beam. The control unit may initiate countermeasures to maintain the beam quality of the laser beam.
摘要:
In certain embodiments, marking a lenticule includes controlling a focus of pulsed laser radiation having ultrashort pulses. A lenticule marking is created in a cornea of an eye with the pulsed laser radiation to mark the lenticule. The lenticule is then created in the cornea with the pulsed laser radiation.
摘要:
A technique for controlling a corneal ablation laser is described. As to a device aspect of the technique, a device comprises a parameter interface, a first determination unit, a second determination unit, a computation unit, and a control unit. The parameter interface receives an adjustment parameter. The first determination unit determines a first point on a corneal surface. The second determination unit determines a second point on the corneal surface that is different from the first point. The computation unit determines a third point on a line between the first point and the second point according to the adjustment parameter. The computation unit further generates a control program that centers an ablation profile on the third point. The control unit controls the corneal ablation laser according to the control program.