摘要:
A system, method, and apparatus includes a computer readable storage medium with a computer program stored thereon having instructions that cause a computer to access a first anatomical image data set of an imaging subject acquired via a morphological imaging modality, access a functional image data set of the imaging subject acquired via a functional imaging modality, register the first anatomical image data set to the functional image data set, segment the functional image data set based on the functional image data set, define a binary mask based on the segmented functional image data set, and apply the binary mask to the first anatomical image data set to construct a second anatomical image data set and an image based thereon. The second anatomical image data set is substantially free of image data of the first anatomical image data set correlating to an area outside the region of physiological activity.
摘要:
Certain embodiments of the present invention provide a method and system for improved clinical workflow using wireless communication. A system for remote image display includes a data source with image data, wherein the data source is capable of transmitting the image data. The system also includes an identifiable display device capable of displaying image data transferred from the data source and a portable device capable of identifying the display device and requesting image data transfer from the data source to the display device without the transfer of the image data between the portable device and the data source. The system may also include an access point for relaying communication between the portable device and the data source. Communication between the portable device, the data source, and/or the display may include wireless communication, for example.
摘要:
Systems, methods and apparatus are provided through which in some embodiments a time series is generated from a plurality of X-ray projections of an object that were acquired under limited angular conditions with a flat-panel X-ray detector, and thereafter the plurality of X-ray projections in the time series are displayed in reference to a pivot point.
摘要:
Certain embodiments of the present invention provide a system and method for structuring dynamic data from a plurality of images. Certain embodiments include accessing an image data set including data representing a plurality of images, determining a dynamic or functional attribute in the image data set, associating the dynamic or functional attribute with a lexical attribute from a lexicon, and storing the lexical attribute and an associated code. The lexical attribute and associated code may be stored in a database and/or a structured report, for example. The lexicon may be modified to accommodate attributes and medical terminology. Attributes relate to a feature and/or a region of interest in the image data set.
摘要:
A method for obtaining data including scanning an object using a multi-energy computed tomography (MECT) system to obtain data to generate an anatomical image, and decomposing the obtained data to generate a first density image representative of bone material and a second density image representative of soft-tissue. The method further includes segmenting at least one of the first density image and the second density image, and volume rendering the second density image.
摘要:
One or more techniques are provided for identifying a period of minimal motion for an organ of interest, such as the heart or lungs. Motion data is acquired for the organ of interest and for one or more proximate organs using sensor-based and/or image-based techniques. The sensor-based techniques may include electrical and non-electrical techniques. The image-based techniques may include both pre-acquisition and acquisition image data. The motion data for the organ of interest and proximate organs may be used to generate a set of multi-input motion data that may be processed to identify desired periods, such as periods of minimal motion, within the overall motion of the organ of interest.
摘要:
A system and method includes using a point spread function based rule to classify regions in a dataset and processing the dataset based on the point spread function based classification.
摘要:
A method for facilitating a reduction in artifacts includes receiving data regarding a first energy spectrum of a scan of an object, and receiving data regarding a second energy spectrum of a scan of the object, wherein the second energy spectrum is different than the first energy spectrum. The method further includes reconstructing at least one original first energy image using the first energy spectrum data, reconstructing at least one original second energy image using the second energy spectrum data, transforming at least one original second energy image into at least one transformed first energy image, and combining at least one original first energy image with at least one transformed first energy image to generate a combined first energy image.
摘要:
A method of imaging and a system therefore are provided. The imaging system includes an image forming device for generating a first image and a second image and a controller coupled to the image forming device. The controller receives the first image and the second image. In the method the controller generates an image ratio of the first image and the second image, regularizes the image ratio of the second image with respect to the first image to form a regularized image ratio and filters the image ratio to form a filtered ratio. The controller then multiplies the second image by the filtered ratio to form an adjusted image.
摘要:
A technique for enhancing discrete pixel images includes blurring or smoothing image data, and identifying structural features based upon the blurred image data. Identification of structural pixels is based upon a scaling factor which may be adjusted by an operator, providing an image enhancement framework which may be easily adapted to various types of images and image acquisition systems. Orientation smoothing of the structure may include dominant orientation smoothing based upon both a dominant orientation for each structural pixel, as well as the orientation orthogonal to the dominant orientation. Orientation sharpening is performed based upon whether structural pixel values exceed a desired threshold. The resulting technique is versatile and provides improved robustness to noise, while offering excellent enhancement of structure of interest in the reconstructed image without loss of texture.