Abstract:
A high-band encoding/decoding method and device for bandwidth extension are provided. A high-band encoding method comprising the steps of: generating sub band-specific bit allocation information on the basis of a low-band envelope; determining, on the basis of the sub band-specific bit allocation information, the sub band requiring an envelope update in a high band; and generating, for the determined sub band, refinement data relating to the envelope update. A high-band decoding method comprising the steps of: generating sub band-specific bit allocation information on the basis of a low-band envelope; determining, on the basis of the sub band-specific bit allocation information, the sub band requiring an envelope update in a high band; and decoding, for the determined sub band, refinement data relating to the envelope update, thereby updating the envelope.
Abstract:
Disclosed are a user terminal device and a control method therefor. The control method for a user terminal device according to the present invention comprises the steps of: determining state information of a satellite device connected with a user terminal device when a call request message is received from another terminal device; determining communication configuration information with the another terminal device on the basis of the state information of the satellite device, and transmitting a call response message including the communication configuration information to the another terminal device; and receiving audio data from the another terminal device according to a communication scheme corresponding to the communication configuration information. Therefore, in comparison with the prior art, the present invention can reduce a call negotiation time between user terminal devices, and thus reduce a call cost.
Abstract:
Disclosed are a method and an apparatus for high frequency decoding for bandwidth extension. The method for high frequency decoding for bandwidth extension comprises the steps of: decoding an excitation class; transforming a decoded low frequency spectrum on the basis of the excitation class; and generating a high frequency excitation spectrum on the basis of the transformed low frequency spectrum. The method and apparatus for high frequency decoding for bandwidth extension according to an embodiment can transform a restored low frequency spectrum and generate a high frequency excitation spectrum, thereby improving the restored sound quality without an excessive increase in complexity.
Abstract:
Provided is a method and apparatus for determining a signal coding mode. The signal coding mode may be determined or changed according to whether a current frame corresponds to a silence period and by using a history of speech or music presence possibilities.
Abstract:
A method of enhancing speech quality includes: generating a high-frequency signal by using a low-frequency signal in a time domain; combining the low-frequency signal with the high-frequency signal; transforming the combined signal into a spectrum in a frequency domain; determining a class of a decoded speech signal; predicting an envelope from a low-frequency spectrum obtained in the transforming; and generating a final high-frequency spectrum by applying the predicted envelope to a high-frequency spectrum obtained in the transforming.
Abstract:
A method is provided. The method includes obtaining a low-band spectrum of an audio signal in which a low-band signal is frequency transformed; obtaining phase information of a high-band spectrum of the audio signal based on the low-band spectrum; and outputting a bitstream that comprises the phase information of the high-band spectrum.
Abstract:
Provided are a method and apparatus for encoding and decoding an audio signal. According to the present application, a signal of a high frequency band above a preset frequency band is adaptively encoded or decoded in the time domain or in the frequency domain by using a signal of a low frequency band below the preset frequency band. As such, the sound quality of a high frequency signal is not deteriorate even when an audio signal is encoded or decoded by using a small number of bits and thus coding efficiency may be maximized.
Abstract:
Provided is an audio encoding method. The audio encoding method includes: acquiring envelopes based on a predetermined sub-band for an audio spectrum; quantizing the envelopes based on the predetermined sub-band; and obtaining a difference value between quantized envelopes for adjacent sub-bands and lossless encoding a difference value of a current sub-band by using a difference value of a previous sub-band as a context. Accordingly, the number of bits required to encode envelope information of an audio spectrum may be reduced in a limited bit range, thereby increasing the number of bits required to encode an actual spectral component.
Abstract:
Provided are a frame error concealment method and apparatus and an error concealment scheme construction method and apparatus. The frame error concealment method includes generating a new signal by synthesizing a plurality of previous signals that are similar to a signal of an error frame and reconstructing the signal of the error frame using the generated signal.
Abstract:
Provided are a method and apparatus for encoding and decoding an audio signal. According to the present application, a signal of a high frequency band above a preset frequency band is adaptively encoded or decoded in the time domain or in the frequency domain by using a signal of a low frequency band below the preset frequency band. As such, the sound quality of a high frequency signal is not deteriorate even when an audio signal is encoded or decoded by using a small number of bits and thus coding efficiency may be maximized.