Abstract:
Various aspects described herein relate to allocating resources in wireless communications. A subset of resource block (RB) groups configured for a legacy wireless communication technology having a first transmission time interval (TTI) can be determined, where the first TTI is based on one subframe in duration, and where each RB group in the subset of RB groups includes one or more RBs. A resource allocation for a low latency communication technology having a second TTI, the second TTI being less than one subframe in duration, can be determined where the resource allocation including one or more low latency RBs in the subset of RB groups. Data can be communicated over resources in the one or more low latency RBs, the low latency RBs being based on the second TTI, and the resources being associated with the resource allocation.
Abstract:
Various aspects described herein relate to scheduling resources in wireless communications. In one aspect, communications can be established with a plurality of user equipment (UE). A set of the plurality of UEs as having an interference impact on one another that is less than a threshold can be determined. A first UE of the set of the plurality of UEs can be scheduled for downlink communications in a first transmission time interval (TTI), and a second UE of the set of the plurality of UEs can be scheduled for uplink communications in a second TTI that is adjacent in time to the first TTI. In another aspect, uplink communications for the first UE can be scheduled in a portion of the guard period TTI based at least in part on determining a timing advance of the first UE is less than a threshold.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for mitigating resource conflicts between ultra low latency (ULL) and legacy transmissions. A base station may determine a region of a subframe having overlapping resource allocations for a first device of a first type (e.g., ULL device) and a second device of a second type (e.g., legacy device), wherein the first device of the first type has a capability to perform certain procedures with low latency relative to the second device of the second type that lacks the capability. The base station may modulate data from the region of the subframe for transmission to the first and the second devices, using a hierarchical modulation scheme.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used for low latency communications. For example, aspects allow a single group acknowledgement to be used to acknowledge a plurality of low latency transmissions. An exemplary method generally includes receiving, from a base station, a plurality of downlink channel transmissions, wherein each of the downlink channel transmissions is sent using a first transmission time interval (TTI) that is reduced relative to a legacy TTI and providing, in a single uplink channel transmission sent using a second TTI that is larger than the first TTI, a group acknowledgement indicating whether or not the downlink channel transmissions were successfully received by a UE.
Abstract:
Various aspects are described relating to wireless communications of a second type of traffic data for small data transmissions. A first indication of control channel resources can be received from a network entity, wherein the control channel resources are defined by a radio access technology to include control data associated with a first type of traffic data. A control channel can be received from the network entity over the control channel resources, wherein the control channel includes a second type of traffic data, wherein the second type of traffic data includes a comparatively smaller data payload than the first type of traffic data. The second type of traffic data can be decoded from the control channel without decoding control data from the control channel.
Abstract:
Various aspects described herein relate to communicating in a wireless network. An uplink resource grant can be received from a network entity for communicating in the wireless network. A transmission time interval (TTI) for an uplink transmission within a subframe based on the uplink resource grant can be determined, wherein the TTI comprises one or more symbols which are a subset of a plurality of symbols in the subframe. Communications can be transmitted to the network entity over resources specified in the uplink resource grant during the TTI.