Abstract:
Techniques and systems are provided for performing predictive random access using a background picture. For example, a method of decoding video data includes obtaining an encoded video bitstream comprising a plurality of pictures. The plurality of pictures include a plurality of predictive random access pictures. A predictive random access picture is at least partially encoded using inter-prediction based on at least one background picture. The method further includes determining, for a time instance of the video bitstream, a predictive random access picture of the plurality of predictive random access pictures with a time stamp closest in time to the time instance. The method further includes determining a background picture associated with the predictive random access picture, and decoding at least a portion of the predictive random access picture using inter-prediction based on the background picture.
Abstract:
A method of manipulating an image by a mobile-device includes segmenting image data corresponding to the image into a first image layer and a second image layer. The method also includes receiving a first user input at the mobile device, the first user input indicating a direction relative to the mobile device, and performing a first image editing operation on the first image layer based on the first user input. The method further includes receiving a second user input at the mobile device, the second user input indicating the direction relative to the mobile device, and performing a second image editing operation on the first image layer based on the second user input. The second image editing operation is distinct from the first image editing operation.
Abstract:
Techniques are described related to generating image content. A graphics processing unit (GPU) is configured to receive a first set of images generated from a first camera device in a first location, the first camera device having a first orientation, render for display the first set of images oriented to an orientation reference, receive a second, different set of images generated from a second, different camera device in a second, different location, the second camera device having a second orientation, the second orientation being different than the first orientation, and render for display the second set of images oriented to the orientation reference.
Abstract:
Techniques are described for generating and rendering video content based on area of interest (also referred to as foveated rendering) to allow 360 video or virtual reality to be rendered with relatively high pixel resolution even on hardware not specifically designed to render at such high pixel resolution. Processing circuitry may be configured to keep the pixel resolution within a first portion of an image of one view at the relatively high pixel resolution, but reduce the pixel resolution through the remaining portions of the image of the view based on an eccentricity map and/or user eye placement. A device may receive the images of these views and process the images to generate viewable content (e.g., perform stereoscopic rendering or interpolation between views). Processing circuitry may also make use of future frames within a video stream and base predictions on those future frames.
Abstract:
A method performed by an electronic device is described. The method includes determining overlapping areas from neighboring images. The method also includes determining a difference measure between the overlapping areas. The method further includes determining a constraint measure corresponding to at least one of the overlapping areas. The method additionally includes determining a seam based on a combination of the difference measure and the constraint measure.
Abstract:
A method of manipulating an image by a device is disclosed. The method includes segmenting image data corresponding to the image into a first image layer and a second image layer. The method further includes adjusting a first attribute of the first image layer independently of a second attribute of the second image layer based on user input.
Abstract:
A method for obtaining structural information from a digital image by an electronic device is described. The method includes determining an iris position in a region of interest based on a gradient direction transform. Determining the iris position may include determining a first dimension position and a second dimension position corresponding to a maximum value in the transform space.
Abstract:
A method for removing an object from an image is described. The image is separated into a source region and a target region. The target region includes the object to be removed. A contour of the target region may be extracted. One or more filling candidate pixels are obtained. Multiple filling patches are obtained. Each filling patch is centered at a filling candidate pixel. A filling patch may be selected for replacement.
Abstract:
A method for detecting and tracking a target object is described. The method includes performing motion-based tracking for a current video frame by comparing a previous video frame and the current video frame. The method also includes selectively performing object detection in the current video frame based on a tracked parameter.
Abstract:
In a particular embodiment, a method includes evaluating, at a mobile device, a first area of pixels to generate a first result. The method further includes evaluating, at the mobile device, a second area of pixels to generate a second result. Based on comparing a threshold with a difference between the first result and the second result, a determination is made that the second area of pixels corresponds to a background portion of a scene or a foreground portion of the scene.