Abstract:
A method and apparatus for efficiently processing data in various formats in a single instruction multiple data (“SIMD”) architecture is presented. Specifically, a method to unpack a fixed-width bit values in a bit stream to a fixed width byte stream in a SIMD architecture is presented. A method to unpack variable-length byte packed values in a byte stream in a SIMD architecture is presented. A method to decompress a run length encoded compressed bit-vector in a SIMD architecture is presented. A method to return the offset of each bit set to one in a bit-vector in a SIMD architecture is presented. A method to fetch bits from a bit-vector at specified offsets relative to a base in a SIMD architecture is presented. A method to compare values stored in two SIMD registers is presented.
Abstract:
Techniques are provided for managing in-memory space and objects. In one embodiment, a set of in-memory objects are maintained within an area in volatile memory that is accessible to a database server. An in-memory object in this context includes a set of one or more in-memory segments where each respective in-memory segment includes a set of in-memory extents and each respective in-memory extent is a contiguous chunk of memory from the area in volatile memory that is accessible to the database server. The area in volatile memory is managed as a set of stripes, where each stripe is a contiguous chunk of in-memory extents. Stripe control blocks are used to locate free in-memory extents for allocation and registration with an in-memory segment.
Abstract:
Techniques are provided for more efficiently using the bandwidth of the I/O path between a CPU and volatile memory during the performance of database operation. Relational data from a relational table is stored in volatile memory as column vectors, where each column vector contains values for a particular column of the table. A binary-comparable format may be used to represent each value within a column vector, regardless of the data type associated with the column. The column vectors may be compressed and/or encoded while in volatile memory, and decompressed/decoded on-the-fly within the CPU. Alternatively, the CPU may be designed to perform operations directly on the compressed and/or encoded column vector data. In addition, techniques are described that enable the CPU to perform vector processing operations on the column vector values.
Abstract:
Techniques are provided for maintaining data persistently in one format, but making that data available to a database server in more than one format. For example, one of the formats in which the data is made available for query processing is based on the on-disk format, while another of the formats in which the data is made available for query processing is independent of the on-disk format. Data that is in the format that is independent of the disk format may be maintained exclusively in volatile memory to reduce the overhead associated with keeping the data in sync with the on-disk format copies of the data.
Abstract:
A database server stores compressed units in data blocks of a database. A table (or data from a plurality of rows thereof) is first compressed into a “compression unit” using any of a wide variety of compression techniques. The compression unit is then stored in one or more data block rows across one or more data blocks. As a result, a single data block row may comprise compressed data for a plurality of table rows, as encoded within the compression unit. Storage of compression units in data blocks maintains compatibility with existing data block-based databases, thus allowing the use of compression units in preexisting databases without modification to the underlying format of the database. The compression units may, for example, co-exist with uncompressed tables. Various techniques allow a database server to optimize access to data in the compression unit, so that the compression is virtually transparent to the user.
Abstract:
A method and apparatus for efficiently processing data in various formats in a single instruction multiple data (“SIMD”) architecture is presented. Specifically, a method to unpack a fixed-width bit values in a bit stream to a fixed width byte stream in a SIMD architecture is presented. A method to unpack variable-length byte packed values in a byte stream in a SIMD architecture is presented. A method to decompress a run length encoded compressed bit-vector in a SIMD architecture is presented. A method to return the offset of each bit set to one in a bit-vector in a SIMD architecture is presented. A method to fetch bits from a bit-vector at specified offsets relative to a base in a SIMD architecture is presented. A method to compare values stored in two SIMD registers is presented.
Abstract:
Techniques are provided for more efficiently using the bandwidth of the I/O path between a CPU and volatile memory during the performance of database operation. Relational data from a relational table is stored in volatile memory as column vectors, where each column vector contains values for a particular column of the table. A binary-comparable format may be used to represent each value within a column vector, regardless of the data type associated with the column. The column vectors may be compressed and/or encoded while in volatile memory, and decompressed/decoded on-the-fly within the CPU. Alternatively, the CPU may be designed to perform operations directly on the compressed and/or encoded column vector data. In addition, techniques are described that enable the CPU to perform vector processing operations on the column vector values.
Abstract:
Techniques are provided for more efficiently using the bandwidth of the I/O path between a CPU and volatile memory during the performance of database operation. Relational data from a relational table is stored in volatile memory as column vectors, where each column vector contains values for a particular column of the table. A binary-comparable format may be used to represent each value within a column vector, regardless of the data type associated with the column. The column vectors may be compressed and/or encoded while in volatile memory, and decompressed/decoded on-the-fly within the CPU. Alternatively, the CPU may be designed to perform operations directly on the compressed and/or encoded column vector data. In addition, techniques are described that enable the CPU to perform vector processing operations on the column vector values.
Abstract:
Techniques are provided for more efficiently using the bandwidth of the I/O path between a CPU and volatile memory during the performance of database operation. Relational data from a relational table is stored in volatile memory as column vectors, where each column vector contains values for a particular column of the table. A binary-comparable format may be used to represent each value within a column vector, regardless of the data type associated with the column. The column vectors may be compressed and/or encoded while in volatile memory, and decompressed/decoded on-the-fly within the CPU. Alternatively, the CPU may be designed to perform operations directly on the compressed and/or encoded column vector data. In addition, techniques are described that enable the CPU to perform vector processing operations on the column vector values.