Abstract:
Apparatus (12) to measure blade vibration in a gas turbine engine (8). An illumination source (20) generates a sequence of illumination bursts in a field of view capturing a passing rotating blade (10) of the gas turbine engine. An imager (22) generates image data including a series of images capturing views of the passing rotating blade. The images are exposed in response to respective illumination bursts. A controller (30) is configured to process the series of images to identify one or more vibration modes of the rotating blade.
Abstract:
A magnetic flux sensor for measuring the radial component of the magnetic flux impinging on a stator bar of a high voltage generator. The magnetic flux sensor includes a fiber Bragg grating formed in an optical fiber and enclosed within a magnetostrictive coating. The magnetostrictive coating responds to changes in magnetic flux by applying a strain on the fiber that changes the reflected wavelength of the Bragg grating that can be measured to provide a measurement of the flux. In one embodiment, one or more of the magnetic flux sensors is positioned directly within an insulating layer of the particular stator bar.
Abstract:
The claimed invention provides a blade vibration measuring system comprising a blade, a transmitter, a target with non parallel edges located on the blade shroud and a receiver. The present invention also provides a blade adapted for measuring blade vibration. Furthermore, the claimed invention provides a method for monitoring blade vibration.
Abstract:
A method for predicting a blade structure failure within a coupled blade structure including a plurality of blades supported for rotation on a rotor and a shroud structure coupling the blades. The method includes the steps of determining displacements of a plurality of predetermined circumferential locations on the shroud structure during rotation of the blade row, where the displacements are provided as a function of time relative to the periodic rotation of the shroud structure for time intervals that are integer multiples of rotor rotation. A signal characteristic related to vibrational mode and a nodal diameter of the shroud structure is derived based on the displacements of the circumferential locations on the shroud structure.
Abstract:
A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
Abstract:
Apparatus and method for monitoring vibration levels in rotatable machinery (52). In one embodiment, a system (50) includes a source (66) for generating coherent radiation (70) and a first partially transmissive, partially reflective device (90) positioned to receive radiation (70) from the source (66) and transmit a part of the radiation there through. A second partially transmissive, partially reflective device (100) is mounted to the machinery (52), positioned to reflect a first signal (72) and transmit radiation (70) transmitted by the first device (90). A third device 104) is mounted to the machinery (52) and positioned to reflect radiation transmitted through the second device to provide a second signal (78). Circuitry (82, 86) is configured to generate an electrical signal based on a combination of the first and second signals (72, 78), and processing circuitry (114) provides a value indicative of vibration amplitude occurring in the machinery (52) based on the combination of the first and second signals. An embodiment of an associated method includes providing a first radiation signal (70) of a first frequency, deriving second and third radiation signals (78A, 78B) each having a time-varying Doppler shifting frequency relative to the first signal, and providing a value indicative of vibration amplitude occurring in the machinery (52) based on a combination of the second and third signals.
Abstract:
A method of measuring vibration in a bladed rotor structure with a vibration monitor. The vibration monitor includes a sensor for sensing passage of the sensor targets on radially outer portions of the blade structure, and the sensor generates signals corresponding to target passing events. An excitation structure is provided including at least one air jet for providing an excitation force to the blade structure. The blade structure is rotated about an axis of rotation and the air jet is driven in a circular path about the axis of rotation at a different rotational speed to apply a non-synchronous excitation force to the blade structure.
Abstract:
A method and apparatus for monitoring vibrations in a blade structure of a turbine including generating signals from a probe located adjacent to a radial outer edge of the blade structure to provide signals corresponding to vibrations at predetermined locations along the tips of the blades. A leading edge of a blade tip is detected during a blade tracking operation, and a known location along the length of the blade tips is monitored during a vibration measurement operation. The measurement operation may be performed simultaneously with the tracking operation to provide measurements as the axial location of the blades change during transitional modes of operation of the turbine.
Abstract:
A method of matching sensors in a multi-probe blade vibration monitor for a turbine. The method includes providing at least two probes mounted in a casing of the turbine adjacent to a rotating blade structure of the turbine. Targets are provided on radially outer portions of the blade structure. Each of the probes includes a sensor generating signals corresponding to target passing events, and a set of synchronous harmonics of the rotational speed of the rotor are produced for each sensor. The position of the sensors is adjusted such that the sets of harmonics of the sensors are substantially matched, indicating that the positions of the sensors are matched.
Abstract:
In some instances, ice can form on the surface of a compressor airfoil. If the ice dislodges, it can impact and damage other compressor components. Aspects of the invention relate to systems for detecting the presence of ice or water on a compressor vane during engine operation. A ceramic insulating coating can be deposited on a portion of the surface of the vane. A heater and a thermocouple can be provided near the outermost surface of the coating such that the thermocouple can sense heat from the heater. The heater and the thermocouple can be provided within the coating. The presence of water film and/or ice on the coating surface can be detected by taking a thermocouple measurement following a heater pulse. The presence of a water film or ice results in a delay in the temperature rise detected by the thermocouple.