Abstract:
In some embodiments, one or more wireless stations operate according to Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling attributes may include a native scheduler rank and a NAN data cluster scheduler rank. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between wireless stations, including mobile stations.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to aspects of NAN communication, including service discovery proxy registration, publishing, and subscription of services via the proxy, maintenance of the proxy, and de-registration of the proxy.
Abstract:
One or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.
Abstract:
This disclosure relates to methods for conducting multilink communications between a user equipment (UE) device and a remote device over a wireless local area network (WLAN). The UE device periodically transmits communications to the remote device over a first frequency band on the WLAN using a first radio. The UE device may determine to switch from transmitting communications to the remote device over the first frequency band to transmitting said communications over a second frequency band. The UE device then transmits communications to the remote device over the second frequency band on the WLAN.
Abstract:
This disclosure relates to methods for conducting multilink communications between a user equipment (UE) device and a remote device over a wireless local area network (WLAN). The UE device periodically transmits communications to the remote device over a first frequency band on the WLAN using a first radio. The UE device may determine to switch from transmitting communications to the remote device over the first frequency band to transmitting said communications over a second frequency band. The UE device then transmits communications to the remote device over the second frequency band on the WLAN.
Abstract:
An apparatus comprises a memory and at least one processor in communication with the memory. The at least one processor is to detect, during a discovery window, a neighboring client station that is to perform peer-to-peer Wi-Fi communication via a Neighbor Awareness Networking (NAN) protocol and establish, via a negotiation after the discovery window, a datapath with the neighboring client station, wherein the negotiation includes an exchange of NAN data path setup attributes in parallel with an exchange of encryption cipher attributes and the encryption cipher is based on a simultaneous authentication of equals (SAE) protocol. The SAE protocol can be used to generate key material to encrypt the datapath.
Abstract:
Some aspects of this disclosure relate to apparatuses and methods for implementing wireless devices. A service is provided by a first application operating on a publisher device to a second application operating on a subscriber device over a first data path between the two devices in a NAN network. The publisher device includes a first recovery manager to receive an indication from a wireless controller of the publisher device or a distress message from a second recovery manager of the subscriber device. The received indication or distress message indicates that the first data path has been interrupted. The first recovery manager stores, in a memory, data generated by the first application. A second data path is established between the publisher device and the subscriber device. The first recovery manager sends the stored data to the second application that operates on a subscriber device.
Abstract:
An electronic device that communicates with a second electronic device is described. During operation, an electronic device communicates first messages with the second electronic device in time slots corresponding to first channels in a first band of frequencies using a peer-to-peer communication protocol (such as neighbor awareness networking or NaN), where, in a given time slot, a given first channel in the first band of frequencies is used in the communication of the first messages. Moreover, the electronic device communicates second messages with the second electronic device in the time slots corresponding to second channels in a second band of frequencies using the peer-to-peer communication protocol, where, in the given time slot, a given second channel in the second band of frequencies is used in the communication of the second messages. Note that the communicating of the first messages and the second messages may at least partially overlap in time.
Abstract:
An electronic device (such as an access point) may provide a management frame, intended for at least a recipient electronic device, that includes slotted-operation information corresponding to a power-save mode of the electronic device for communication with at least the recipient electronic device. The slotted-operation information may include a sequence of temporal slots and associated channel information for the temporal slots. When a channel for a temporal slot comprises a null value, the power-save mode may include transitioning the electronic device into a lower-power-consumption mode during the temporal slot. Alternatively, when a channel for a temporal slot is different than a null value, the power-save mode may include performing another activity than communicating with the recipient electronic device during the temporal slot.
Abstract:
In embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which stations can communicate and provide services. In particular, embodiments described herein relate to the use of cancelable and non-cancelable further availability windows in conjunction with NAN communication.