摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.
摘要:
A method of detecting the alignment error of lenses and reducing image distortion attributable to the alignment error in a lens-type 3-dimensional liquid crystal display monitor. A method of detecting the alignment error of lenses in a 3D display using a purpose-built test pattern image, which predicts the alignment error in such a way as to calculate variation in view indices of pixels in a lateral direction, observed by an eye of an observer, if there is alignment error in the lenses. A method of compensating for image distortion in a 3D monitor, including the steps of finding the relationship between the pixels of a Liquid Crystal Display (LDC) panel and the pixels of observed images, which are determined depending on the location of an observer; and compensating for image distortion attributable to the rotational and translational alignment error of the lenses based on the found relationship.
摘要:
A method of coding a moving picture reduces blocking artifacts. The method includes defining pixel sets S0, S1, S2 around a block boundary, selectively determining a deblocking mode as a default mode or a DC offset mode depending on the degree of blocking artifacts. If the default mode is selected, frequency information is obtained around the block boundary per pixel using a 4-point DCT kernel, for example, a magnitude of a discontinuous component belonging to the block boundary is replaced with a minimum magnitude of discontinuous components belonging to the surroundings of the block boundary in the frequency domain and the replacing step is applied to the spatial domain. If the DC offset mode is selected and a determination is made to perform DC offset mode, the blocking artifacts in a smooth region are removed in the DC offset mode.
摘要:
The present invention relates to an image processing system for enhancing the image quality of an ultrasound image. The image processing system may include: an image data forming unit for forming image data based on image signals acquired from a target object; a log-compression unit for log-compressing the image data to provide a log-compressed image; a TGC processor for analyzing a vertical profile of pixel intensities in the log-compressed image and automatically setting a TGC (time gain compensation) parameter based on the analysis result; a gain processor for calculating mean brightness of pixels included in the log-compressed image applying the set TGC parameter and comparing the calculated mean brightness with predetermined brightness, thereby automatically setting a gain parameter based on a comparison result; a DR processor for automatically setting a DR (dynamic range) parameter by using edge contrast and background roughness of the log-compressed image applying the set TGC and gain parameters; and an image forming unit for applying the TGC, gain and DR parameters to the image data.
摘要:
There are disclosed embodiments for non-rigid image registration between 3-dimensional ultrasound and CT images by using intensity and gradient information of vessels and diaphragm. An ultrasound image forming unit transmits/receives ultrasound signals to/from a target object to thereby output electrical receive signals, and forms 3-dimensional ultrasound images based on the electrical receive signals. A CT image forming unit forms 3-dimensional CT images of the target object. A registration unit determines first and second objective functions associated with diaphragm and vessel regions of the target object, respectively, based on intensity and gradient information upon portions corresponding to the diaphragm and vessel regions in each of the 3-dimensional ultrasound and CT images. The registration unit performs non-rigid image registration between the 3-dimensional ultrasound images and the 3-dimensional CT images based on the first and second objective functions.
摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.
摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.
摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.
摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.
摘要:
A method of coding a moving picture is provided that reduces blocking artifacts. The method can include defining a plurality of defining pixels S0, S1, and S2, which are centered around a block boundary. If a default mode is selected then frequency information of the surroundings of the block boundary is obtained. A magnitude of a discontinuous component in a frequency domain belonging to the block boundary is adjusted based on a magnitude of a corresponding discontinuous component selected from a pixel contained entirely within a block adjacent the block boundary. The frequency domain adjustment is then applied to a spatial domain. Or, a DC offset mode can be selected to reduce blocking artifacts in smooth regions where there is little motion.