摘要:
A Continuous-Time Delta-Sigma Analog-to-Digital Converter (CTΔΣADC) for a radio frequency (RF) receiver employing a 200 kHz IF realizes an optimal signal-to-noise ratio using a programmable resonator that is set to resonate at 200 kHz. The programmable resonator is operably coupled to receive both an analog input signal at a low IF of 200 kHz and an analog feedback signal. From the analog input signal and the analog feedback signal, the programmable resonator produces a resonate signal at the low IF, and provides the resonate signal to a quantizer. The quantizer produces a digital output having a digital value coarsely reflecting an amplitude of the analog input signal. The CTΔΣADC further includes at least one programmable digital-to-analog converter (DAC) operably coupled to receive the digital output and to convert the digital output into the analog feedback signal provided to the programmable resonator.
摘要:
A delay device has at least one first delay element and optional additional delay elements connected downstream from the first in a serially consecutive manner. The digital input signal is connected to an input of the first delay element and is connected to an input of a first D/A converter. The output of the first delay element is connected to an input of another D/A converter assigned thereto. The optional additional delay elements each have outputs connected to an input of another D/A converter assigned to the respective delay elements. All D/A converters are combined on the output side in a step-by-step manner so that output signals of all D/A converters form the analog output signal or the device. A specific coefficient is assigned to each D/A converter, and a specific delay time is assigned to each delay element for realizing a filter characteristic.
摘要:
A delay device has at least one first delay element and optional additional delay elements connected downstream from the first in a serially consecutive manner. The digital input signal is connected to an input of the first delay element and is connected to an input of a first D/A converter. The output of the first delay element is connected to an input of another D/A converter assigned thereto. The optional additional delay elements each have outputs connected to an input of another D/A converter assigned to the respective delay elements. All D/A converters are combined on the output side in a step-by-step manner so that output signals of all D/A converters form the analog output signal or the device. A specific coefficient is assigned to each D/A converter, and a specific delay time is assigned to each delay element for realizing a filter characteristic.
摘要:
The invention discloses a sigma-delta converter arrangement with a forward path including an amplifier and a quantizer with a clock input, and a feedback path with a D/A converter. The amplifier is coupled to an integrator which is in the form of a resonator with a tunable frequency and is actuated by a frequency synthesizer that also prescribes the clock rate of the quantizer. The synchronization between the quantizer and resonator results in highly accurate matching given inexpensive integratabiliy, which means that the sigma-delta converter is suitable for use in mobile radios, for example.
摘要:
The invention discloses a sigma-delta converter arrangement with a forward path including an amplifier and a quantizer with a clock input, and a feedback path with a D/A converter. The amplifier is coupled to an integrator which is in the form of a resonator with a tunable frequency and is actuated by a frequency synthesizer that also prescribes the clock rate of the quantizer. The synchronization between the quantizer and resonator results in highly accurate matching given inexpensive integratabiliy, which means that the sigma-delta converter is suitable for use in mobile radios, for example.
摘要:
Systems and methods are provided for providing feedback to a delta-sigma analog-to-digital converter assembly. A noise shaper preprocesses an analog input signal according to an analog feedback signal and an associated transfer function. A quantizer converts the preprocessed analog input signal into a digital output signal. A delta-sigma modulator shapes noise within a sample of the digital output signal. A digital-to-analog converter converts the shaped digital signal into an analog signal to provide the analog feedback signal.
摘要:
A band-pass sigma-delta modulator includes a translator for tuning to a selected signal passband within the tuning range of the modulator. In a network implementation, the translator is integral with each integrator associated with the sigma-delta modulator(s). The translator can comprise a network having a transfer function defined in the Z-domain as (Z.alpha.-1)/(Z-.alpha.), where -1.ltoreq..alpha..ltoreq.1 defines the tuning. The value of .alpha. is defined as .alpha..tbd.cos(2.pi.f.sub.gm /f.sub.s), where f.sub.gm is the geometric mean frequency of the passband and f.sub.s is the input sample frequency of the sigma-delta modulator(s). The invention can benefit many signal processing applications such as, for example, A/D, D/A and D/D converters; and digital communication systems including digital radio and digital TV. In digital communications (e.g., radio, TV, etc.), the invention can be used where it is desirable to digitize the full tuning range or bandwidth of a receiver at an intermediate frequency early in the processing chain, thus allowing digital tuning or mixing of the desired signal. Such digital mixing or tuning overcomes the limitations of analog mixers/receivers, for example limited linearity in dynamic range as well as the problems associated with aliasing, artifacts, ghosts, harmonics, distortion, gain and phase mismatch, etc. The sigma-delta modulator of the invention also provides variable bandwidth, is operationally stable and is easily and inexpensively realized.