摘要:
A plasma arc melter which is equipped with at least two transferred arc plasma torches of opposite polarities is used to melt normal batch materials for producing glass, ceramics, refractories and other such materials and for the recycling, combustion and/or vitrifying incineration of waste materials. To enhance the stability of the plasma jets, the anode torch is positioned farther above the surface of the materials being processed than the cathode torch and the materials being processed are introduced into the melter so that the materials first pass beneath the cathode torch. An oxidizing gas can be introduced into the zone between the torches in the region of the plasma jets to enhance the combustion process. For waste materials with a high organic content, a plasma arc afterburner can be used to further treat the exhaust gases from the melter.
摘要:
A disposal of waste material including water, volatile components and vitrifiable components, the waste material is heated in a dehydrator to remove the water, heated in a high-temperature dryer to vaporize hydrocarbon liquids, and then fed to the focus point of a primary plasma reactor where plasma arc jets are focused on the surface of a pool of the vitrifiable components. At the focus point the vitrifiable components are melted, and the volatile components are volatized. The melted vitrifiable components are received in a quench chamber where they solidify on a quench roller and are broken into chips and delivered to a receiving area. Heat from the quench chamber is transferred to the dehydrator and high-temperature dryer. The hydrocarbon liquids and volatized components are fed to a secondary plasma reactor where they are disassociated into their elemental components. The effluent from the secondary plasma reactor is scrubbed to remove hydrogen sulfide and halogens, and residual components, together with excess water vapor, are extracted in an absorber and fed back for further processing in the secondary plasma reactor.
摘要:
Lead-contaminated soil and battery casings are remediated using a plasma arc furnace which pyrolyzes the soil and waste battery casings so as to form a vitrified slag and a combustible gas, respectively. The combustible gas along with volatilized lead (and other heavy metals which may be present) are transferred to, and used as a primary fuel by, a conventional smelting furnace. The volatilized lead that is entrained in the combustible gas is thus transferred to the recovery and environmental protection/control equipment associated with the smelting furnace. The soil, on the other hand, is convened into a non-toxic (i.e., according to the Toxicity Characteristic Leaching Procedure) vitrified slag by the plasma arc which may be crushed and used as a commercial material (e.g., roadway aggregate, asphalt filler material and the like) or simply transferred to a landfill where it poses no environmental threat.
摘要:
An apparatus for processing various hazardous waste materials by melting in a vessel for subsequent solidification is disclosed which includes a seal for the cover thereof. Melter includes a high-speed mixing impeller powered by a drive shaft which extends through an opening in the cover. The vessel is electrically heated by discharge of electrical energy through the melt contained in the vessel. In one embodiment the impeller and shaft are included in the electrical heating circuit. A shaft seal engages the shaft at a point spaced from the cover. An axially extensible seal seals a space bounded by the shaft seal and the opening in the cover. Purge gas is supplied to the sealed space to provide positive gas flow from the sealed space into the vessel. A cold wall transport duct for off-gas porting is disclosed. A bottom drain structure including a sleeve and plug is also disclosed. The output of the melter may be subsequently heated in a holding tank to refine the output.
摘要:
For disposal of waste material including water, volatile components and vitrifiable components, the waste material is heated in a dehydrator to remove the water, heated in a high-temperature dryer to vaporize hydrocarbon liquids, and then fed to the focus point of a primary plasma reactor where plasma arc jets are focused on the surface of a pool of the vitrifiable components. At the focus point the vitrifiable components are melted, and the volatile components are volatized. The melted vitrifiable components are received in a quench chamber where they solidify on a quench roller and are broken into chips and delivered to a receiving area. Heat from the quench chamber is transferred to the dehydrator and high-temperature dryer. The hydrocarbon liquids and volatized components are fed to a secondary plasma reactor where they are disassociated into their elemental components. The effluent from the secondary plasma reactor is scrubbed to remove hydrogen sulfide and halogens, and residual components, together with excess water vapor, are extracted in an absorber and fed back for further processing in the secondary plasma reactor.
摘要:
A method is disclosed in which a plasma arc torch is used to vitrify and remediate a site containing contaminated soils, resulting from a hazardous material deposit or spill, or contaminated buried objects. The contaminated earthen material or subterranean deposit is pyrolyzed, melted or solidified by the plasma torch which is energized at the bottom of a cased, vertical borehole, and then gradually raised to the surface. An array of boreholes, appropriately spaced, will remediate an entire mass of contaminated material. Similarly, buried objects such as metal drums containing contaminants and underground storage tanks may be selectively remediated at their specific buried depth. Similar use is made of the plasma torch in a second embodiment with the additional step of processing at selected underground locations in the borehole array to create a sealed horizontal layer, vertical cutoff walls or a sealed basin as a barrier against further leaching of contaminants into surrounding soil and groundwater. Gaseous by-products of the pyrolysis process are collected, treated and processed, as appropriate.
摘要:
For melting an inorganic fiber which is mixed with an organic substance, the inorganic fiber material and organic substance are heated in a furnace to a temperature sufficient for the organic material to combust, and sufficient oxygen enriched gas is fed to the furnace that the combustion of the organic substance produces sufficient heat to melt the inorganic material. The oxygen enriched gas is preferably oxygen enriched air having an oxygen content of at least 40% by volume. It should be fed in sufficient quantity to heat material having an adiabatic temperature of at least 850.degree. C., and preferably 1200.degree. C. which permits the melted inorganic material to freely flow out of the furnace. The oxygen enriched gas is preferably fed to a location adjacent a boundary layer between the melted material and unmelted material on the top thereof.
摘要:
A method for processing ash residues and other solide combustion products, derived from combustion of waste materials in furnaces whereby the ash and other combustion products are gradually supplied in a continuous manner into the high side of a glaze-kiln, showing a sloping course, which is heated from its lower side, and are fused and glazed in a continuously proceeding process at high temperatures and a glaze-kiln, useful in this method.
摘要:
A discharging device is provided at the bottom of a glass melting furnace. The device includes an inductively heated outlet unit including a compression flange having an inlet opening and an outlet pipe extending from the compression flange to form therewith a unit having a T-shaped cross section. The outlet pipe is penetrated by an outlet channel communicating with the inlet opening. The outlet pipe projects downwardly out of an opening in the furnace. An outlet block is seated on the compression flange and has an outlet channel flush with the inlet opening of the compression flange. An annular supporting flange supports the outlet unit from the bottom against the compression flange, with the annular supporting flange being supported by a bottom carrier plate of the furnace and the outlet pipe of the outlet unit projecting through an opening in the annular supporting flange. A thermal and mechanically deflecting creep barrier is disposed for stopping creep flow of glass melt between the compression flange of the outlet unit and other components of the furnace, including the outlet block, in contact with the compression flange, by freezing the melt and causing a pressure loss in the creep flow with respect to static pressure of the melt in the furnace.
摘要:
A bottom outlet device is provided for a glass melting furnace, with heating of a glass melt being effected to within the temperature range of the electrical conductivity of the melt by way of electrodes disposed in the interior of the furnace and projecting into the melt. An inductively heatable and metallic outlet unit projects from the bottom of the furnace and includes an outlet opening and an interior outlet channel communicating with the outlet opening. An outlet block comprised of ceramic bricks is disposed above the outlet unit and includes a throughgoing channel which opens toward the interior of the furnace and which is flush with the interior outlet channel of the outlet unit. A bottom electrode comprised of metal is disposed at a lowermost portion of the interior of the furnace. The bottom electrode is penetrated by a further channel which is flush with the throughgoing channel in the outlet block and is thereby in communication with the outlet opening of the outlet unit.