Abstract:
A membrane, especially for application in a sensor, which membrane includes a biocidal effect. The membrane comprises one or more components of the group consisting of: silver nano particles encapsulated in amphiphilic, core, shell structures, antimicrobial silanes, polymers with an antimicrobial end group, polyquads with modified end groups, and biocidally acting block copolymers. The membrane is resistant against aggressive agents, for example, corrosive or oxidizing cleaning agents, in the case of sterilizing, in the case of autoclaving, in the case of thermal loading and/or in the case of mechanical loading.
Abstract:
A measuring transducer embodied to produce and output a measurement signal dependent on an activity of a target ion present in a measured medium, wherein the measuring transducer has, in a region provided for contact with the measured medium, at least one membrane conducting the target ion; wherein the measuring transducer has a first potential sensing element and a second potential sensing element, and wherein at least one section of the second potential sensing element is arranged in the interior of the membrane and the first potential sensing element is arranged in an inner electrolyte, which is separated from the measured medium by the membrane and is in contact with the membrane.
Abstract:
A retractable assembly, including an assembly housing and a tubular holder for a sensor guided in the assembly housing via a stroke movement linearly between a first position and a second position, wherein the sensor ascertains a physical and/or chemical process variable in a process, wherein an on-site electronics is provided, which ascertains as an actual value, or values, information concerning at least one other state variable of the retractable assembly, the process and/or the sensor, and wherein associated with the on-site electronics is a memory unit, in which the ascertained actual value, or values, is/are stored and/or predetermined desired values are stored.
Abstract:
A measuring system and method for determining and/or monitoring the flow of a measured medium through a measuring tube with a first ultrasonic sensor and at least a second ultrasonic sensor. The first Ultrasonic sensor is placeable in a first region of the measuring tube, and the second ultrasonic sensor is placeable in a second region of the measuring tube. The ultrasonic signals transmittable through the measured medium from the first ultrasonic sensor are receivable by the second ultrasonic sensor, and the ultrasonic signals transmittable through the measured medium from the second ultrasonic sensor are receivable by the first ultrasonic sensor. A control/evaluation unit ascertains the volume flow and/or the mass flow of the measured medium flowing in the measuring tube by means of a travel-time difference method.
Abstract:
A measuring apparatus having a measurement voltage input with at least one input contact for an input voltage of a measuring element and a method for detecting moisture on the measurement voltage input of such a measuring apparatus are provided, wherein the measuring apparatus includes a supplemental voltage source, which delivers at least one supplemental voltage and is connected with a supplemental contact arranged in the region of the at least one input contact.
Abstract:
A turbidity measuring device having a four-beam, alternating light arrangement for registering turbidity of a measured medium includes first and second light sources L1, L2; and first and second receivers R1, R2. The direct measuring paths extend from light sources Li, through a measured medium, to receivers Ri, and indirect measuring paths extend from light sources Li, through the measured medium, to second receivers Rj; wherein i≠j; wherein turbidity can be ascertained as a function of a quotient A/B by means of an evaluating circuit; wherein A and B are functions at least of signals registered via the direct or indirect measuring paths; wherein at least a first monitor signal, which depends on the first light source, enters into one of the two terms A or B; wherein the light reaches the monitor from the first light source without interaction with the measured medium; and wherein the monitor signal is added to at least one of the signals registered via the measuring paths and entering into the term A or B.
Abstract:
A method for measuring a spectrum of an optical sensor, advantageously in the infrared region, in which a light beam impinges on an optical sensor in contact with a medium to be measured, wherein the optical sensor transmits a measurement beam changed by the medium to be measured and the measurement beam is fed to a pyrodetector, which issues output signals corresponding to the spectrum. The intensity of the measurement signal is modulated before impinging on a pyrodetector. In order to provide a cost effective, vibration free measuring apparatus, which has a long lifetime, intensity modulation of measurement beam occurs by tuning-in wavelengths contained in the optical spectrum of measuring beam.
Abstract:
A method for removing chloride from samples containing volatile organic carbon, wherein a chloride containing sample is mixed with a difficultly volatile acid, wherein hydrochloric acid gas arises, which is present in dissolved form in a sample-acid mixture and then the hydrochloric acid gas is purged by a carrier gas from the sample-acid mixture, wherein the hydrochloric acid gas is removed from the carrier gas following the purging and the carrier gas is fed back to the sample-acid mixture. In order during the hydrochloric acid purging largely to suppress the driving out of easily volatile organic compounds, the sample-acid mixture has a temperature of approximately 3° C. to 30° C., wherein, following the purging from the sample-acid mixture, the hydrochloric acid gas is removed from the carrier gas by absorption with water.
Abstract:
An inductively working sensor for determining the conductivity of a liquid medium. The sensor includes: at least one transmitting circuit, which is designed to deliver an input signal for a transmitting coil, in order to produce in the transmitting coil an alternating electromagnetic field, which causes a ring-shaped electrical current in the liquid medium; at least one receiving circuit, which is designed to evaluate a received signal produced by the ring-shaped electrical current in a receiving coil; a first coil; a second coil, which is arranged at a distance from the first coil; a switching means for switching between a first switch state and a second switch state, wherein, in the first switch state, the first coil, serving as transmitting coil, is coupled with one of the transmitting circuits; and the second coil, serving as receiving coil, is coupled with one of the receiving circuits, and wherein, in the second switch state, the second coil, serving as transmitting coil, is coupled with one of the transmitting circuits, and the first coil, serving as receiving coil, is coupled with one of the receiving circuits.
Abstract:
A system for process automation with a plurality of intelligent sensors, wherein each sensor serves for determining or monitoring a physical or chemical, process variable of a medium and each sensor has a primary side, plug connector element and a secondary side, plug connector element with a sensor element. Energy supply and data communication occurs between the two plug connector elements via a releasable plug-in connector coupling, wherein associated with each sensor is a Web service interface, via which the sensor is connectable to a wide area network (WAN) or to a local area network (LAN). A control unit or a server is provided, which provides at least one software for generating a virtual measurement transmitter, and wherein communication occurs between the virtual measurement transmitter and the sensors via the Web service interface.