Abstract:
An airbag cover is defined by a predetermined breaking line which is introduced into a shaped flat material in a recessed manner. The recesses are achieved by removing material by means of laser radiation. According to the invention, the flat material is provided with a barrier layer. The barrier layer, by reason of its material properties, has greater resistance to removal of material by laser action than the material of the rest of the flat material. The recesses made by removing material extend along the predetermined breaking line in the flat material up to the barrier layer. The barrier layer makes it possible to produce a predetermined breaking line by means of laser machining which allows an exact residual wall thickness of the airbag cover in the area of the predetermined breaking line, so that the tearing strength can be adjusted very accurately, which is critically important for a reliable deployment of an airbag. Further, a method for the efficient production of an airbag cover of this type is indicated.
Abstract:
A device for loading, storing and providing objects having standardized dimensions includes a storage unit with a carrier plate and four stackers. Each stacker includes a bottom surface disposed on top of the carrier plate. The stackers are configured to store objects stacked perpendicular to the carrier plate. The stackers are disposed symmetrically centered around a rotation axis that is perpendicular to the carrier plate and offset with respect to each other by an angle of 90°. A substructure is disposed underneath the carrier plate. An unloading device is configured to unload a selected object from a first of the stackers that is disposed in a transfer position. The storage unit is rotatable around the rotation axis so as to enable movement of each of the stackers into the transfer position.
Abstract:
A device for loading, storing and providing objects having standardized dimensions includes a storage unit with a carrier plate and four stackers. Each stacker includes a bottom surface disposed on top of the carrier plate. The stackers are configured to store objects stacked perpendicular to the carrier plate. The stackers are disposed symmetrically centered around a rotation axis that is perpendicular to the carrier plate and offset with respect to each other by an angle of 90°. A substructure is disposed underneath the carrier plate. An unloading device is configured to unload a selected object from a first of the stackers that is disposed in a transfer position. The storage unit is rotatable around the rotation axis so as to enable movement of each of the stackers into the transfer position.
Abstract:
Excitation of a triad artificial photosynthetic reaction center consisting of a porphyrin (P) convalently linked to a fullerene electron acceptor (C60) and a carotenoid secondary donor (C) leads to the formation of a long-lived C+-P-C60− charge-separated state via photoinduced electron transfer. This reaction occurs in a frozen organic glass down to at least 8 K. At 77 K, charge recombination of C*+-P-C60− occurs on the μs time scale, and yields solely the carotenoid triplet state. In the presence of a small (20 mT) static magnetic field, the lifetime of the charge-separated state is increased by 50%. This is ascribed to the effect of the magnetic field on interconversion of the singlet and triplet biradicals. At zero field, the initially formed singlet biradical state is in equilibrium with the three triplet biradical sublevels, and all four states have comparable populations. Decay to the carotenoid triplet only occurs from the three triplet sublevels. In the presence of the field, the S and T0 states are still rapidly interconverting, but the T+ and T− states are isolated from the other two due to the electronic Zeeman interaction, and are not significantly populated. Under these conditions, recombination to the triplet occurs only from T0, and the lifetime of the charge-separated state increases. This effect can be used as the basis for a magnetically controlled optical or optoelectronic switch (e.g. AND gate).
Abstract:
A method of dispersing flux in molten metal includes providing a source of flux powder and a source of gas. An impeller is disposed on an end of a shaft inside the impeller chamber of a base made of heat resistant material. The base is submerged in the molten metal and includes a molten metal inlet opening into the impeller chamber and a molten metal discharge passageway extending from the impeller chamber to an exterior of the base. Molten metal is drawn through the inlet opening into the impeller chamber by rotation of the impeller in the impeller chamber. The molten metal is moved out of the impeller chamber through the discharge passageway by the rotation of the impeller. A discharge stream of molten metal travels through the discharge passageway into the molten metal exterior to the base. The gas flows from the gas source into a refractory flux conduit. The flux conduit extends from outside the molten metal into fluid communication with the discharge passageway. The flux solids move from the flux source to the flux conduit. The flux solids flow along the interior of the flux conduit by virtue of the flowing gas. The gas and flux solids are injected into the discharge stream in the discharge passageway. The flux solids are dispersed in the molten metal of the chamber.
Abstract:
The invention is directed to a device for optical analytic measurement in a multisample carrier, particularly for measuring fluorescence or bioluminescence. The object of the invention, to find a novel possibility for measuring fluorescence or luminescence in multisample carriers, wherein, during excitation of all of the wells, the secondary radiation of each well is measured simultaneously without impermissible contributions of background radiation which falsify the characteristic emission of the sample material, is met according to the invention in that the excitation light from a light source unit is directed on the multisample carrier coaxially in a ring-shaped manner around an optical axis wherein the optical axis is oriented in direction of a surface normal of the multisample carrier and coaxial to the direction of the readout beam path, and a ring mirror unit with at least one curved ring mirror, which is arranged coaxial to the optical axis in such a way that the excitation light; illuminates the multisample carrier homogeneously on all sides at an oblique incident angle, is provided for orientation of the excitation light on the multisample carrier.
Abstract:
An integral molded part of a plastic material for the analysis and preparation of substances, having at least one surface region and an interior region, wherein said at least one surface region is an open-pore three-dimensional network.
Abstract:
A router (R) for a distributed routing communications network includes i) a database (BD1-BD3) containing data representing states of links between routers of the network, ii) calculation means (MC) adapted to determine routes from the data and to update distributed routing tables as a function of the determined routes, and iii) management means (MG) adapted, in the event of local reception or transmission of an LSA or a TE-LSA at a time TAL(R), to determine the elapsed time (T_e) from the reception or transmission of the last instance of the LSA or the TE-LSA in order to compare it to a selected threshold and either to await the expiry of a current calculation delay (OPC) in the presence of a TE-LSA or to trigger a stabilization delay of selected duration and the starting time TAL(R) of which serves to resynchronize the expiry time of the current calculation delay to a selected time in the presence of a bursty TE-LSA, so as to instruct the calculation means (MC), after expiry of the calculation delay, to determine new routes from the last LSA or TE-Lsa instances received that were sent before a time preceding the expiry time of the current calculation delay by a time at least equal to a synchronization threshold and then to update the associated routing tables after expiry of a refresh delay.
Abstract:
A tip comprises an elongated, axially symmetric hollow tip body with an outlet opening for dispensing precise amounts of liquid and a receiving opening with a diameter that is greater than the outlet and a tubular inlay which is inserted into the hollow space of the tip body.