Abstract:
Provided are a method for receiving, by a terminal, a scheduling signaling transmitted by a transmitting node; then, deciding, by the terminal, whether a gap is to be reserved between an uplink signal symbol and an uplink physical channel symbol, and determining a time-frequency resource mapping of an uplink signal and/or an uplink physical channel; or, deciding, by the terminal, whether a predefined signal is to be transmitted on a predefined time-frequency resource within an uplink signal symbol, and determining a time-frequency resource mapping of an uplink signal and/or an uplink physical channel; transmitting, by the terminal, the uplink physical channel and/or the uplink signal, or quitting scheduling and transmitting the uplink physical channel and/or the uplink signal. Thus, when an uplink signal is transmitted on the basis of an LBT, mutual hindrance between an uplink physical channel and an uplink detection signal is effectively reduced.
Abstract:
Embodiments of the present disclosure provide a method for transmitting uplink control information. The method includes: a User Equipment (UE) receives Uplink Control Information UCI configuration information, wherein the UCI configuration information includes information for determining a periodicity, an offset and a Physical Uplink Control Channel PUCCH for Periodic-Channel State Information P-CSI to be report in one subframe and configuration information for transmission of Hybrid Automatic Retransmission reQuest-Acknowledgement HARQ-ACK; processes one or more kinds of UCI in the subframe, and transmits the UCI on resources using a PUCCH format. According to the method of the present disclosure, the transmit power for transmitting the UCI on the channel using the PUCCH format is optimized. During the transmission of the P-CSI, the PUCCH resource most preferable for the transmission of the P-CSI is determined. The uplink resource utilization ratio is increased.
Abstract:
A method for channel sensing and signal transmission is provided. The method includes that a signal transmission mode of a communication node in a predefined time window is different from a signal transmission mode of the communication node outside the predefined time window, which includes at least one of a channel sensing mode and a data transmission mode. By performing the method, a frequency domain multiplexing coefficient among nodes adopting the same access technology can be improved, and the coexistence of the access technology and others can be ensured.
Abstract:
An uplink control information (UCI) transmitting method is provided. In this method, a user equipment (UE) receives a configuration signaling, determines a candidate physical uplink control channel (PUCCH) set corresponding to an acknowledgement (ACK)/negative acknowledgement (NACK) resource indication (ARI), receives a downlink grant signaling and downlink data corresponding to the downlink grant signaling, generates hybrid automatic repeat request ACK (HARQ-ACK) bits, performs processing for UCI bits including HARQ-ACK, determines the PUCCH used to transmit the UCI bits in the candidate PUCCH set according to an ARI in the downlink grant signaling, and transmits the UCI bits on the determined PUCCH. The present disclosure further provides an aperiodic channel state information (A-CSI) transmitting method. In this method, a UE receives an uplink grant signaling, determines whether an A-CSI report is triggered according to a CSI request field in the uplink grant signaling, determines a CSI process to be updated after determining that the A-CSI report is triggered, and transmits A-CSI on an uplink component carrier (CC) carrying the A-CSI report.
Abstract:
A Physical Uplink Shared Channel (PUSCH) transmission method by a User Equipment (UE) in a traffic adaptation system is provided. The method includes receiving, from a base station, a Physical Downlink Control Channel (PDCCH) for scheduling PUSCH resources, obtaining an Uplink (UL)-Grant in the PDCCH, determining a reference uplink and downlink configuration of the scheduled PUSCH resources in the PDCCH, based on at least one of the bit value of a UL-Index or a UL-Downlink Assignment Index (DAI) in the UL-Grant, and a serial number of a subframe in which the UL-Grant is located, and transmitting PUSCH data on the scheduled PUSCH resources according to a timing relationship corresponding to the reference uplink and downlink configuration.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method for allocating Physical Uplink Control Channel (PUCCH) resources, including: a User Equipment (UE) detects a Physical Downlink Control Channel (PDCCH) scheduling a Physical Downlink Shared Channel (PDSCH) in a configured control resource set; the UE analyzes the detected PDCCH, correspondingly receives PDSCH, and determines PUCCH resources feeding back Hybrid Automatic Repeat request-ACK (HARQ-ACK) information; the UE transmits the HARQ-ACK information by using the determined PUCCH resources. By adopting the method in the present disclosure, a method for allocating PUCCH resources is provided. An upper-limit resource utilization is improved. And a method for indicating PUCCH resources in Downlink Control Information (DCI) is put forward, thereby reducing bit overheads of DCI.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments of the present invention provide a method for transmitting a signal, comprising: selecting a starting position of the signal from a set of candidate starting positions for transmitting the signal; determining a symbol mapping of the signal based on a selected starting position or a set of candidate starting positions of the signal; and transmitting the signal is based on the symbol mapping. The embodiment of the invention also provides a corresponding apparatus.
Abstract:
The present application provides a method for transmitting data, which includes the following. A UE detects a physical downlink control channel, PDCCH, on a configured control resource set; the UE analyzes the detected PDCCH, and determines a method for dividing code blocks, CBs, and a method for rate matching of a physical downlink shared channel, PDSCH, and receives the PDSCH accordingly. By the method of the present application, when a service with a low delay requirement punches the time-frequency resources of other services, a performance of the other services is improved as much as possible, and the resource utilization rate is improved as much as possible.
Abstract:
According to the present disclosure, a resource selection method, characterized in that, comprising the steps of: sensing, within a sensing window, a Scheduling Assignment (SA) for other User Equipments (UEs), measuring a received power based on the SA, and sensing a received energy of each sub-channel of each subframe; selecting a corresponding resource based on the sensed SA, the received power and the received energy; and transmitting the selected resource to other UEs based on the SA to perform data transmission by the resource.
Abstract:
The present disclosure provides an uplink signal transmission method, a terminal, and base station. The terminal receives, from a base station, control information for an uplink scheduling, the control information including information indicating a reference starting position of a physical uplink shared channel (PUSCH); and transmits, to the base station, data based on the information indicating the reference starting position of the PUSCH. The information indicating the reference starting position of the PUSCH includes a starting symbol and a starting position preceding the starting symbol.