Abstract:
The present invention provides a motion detecting system, which includes a light source module, a plurality of image sensors and a control unit. The light source module illuminates at least one object. The image sensors respectively detect the object under the light emitted by the light source module to generate a plurality of detection results. The control unit is coupled to the image sensors, and generates a control command according to the detection results.
Abstract:
An optical flow sensing method includes: using an image sensor to capture images; using a directional-invariant filter device upon at least one first block of the first image to process values of pixels of the at least one first block of the first image, to generate a first filtered block image; using the first directional-invariant filter device upon at least one first block of the second image to process values of pixels of the at least one first block of the second image, to generate a second filtered block image; comparing the filtered block images to calculate a correlation result; and estimating a motion vector according to a plurality of correlation results.
Abstract:
A far infrared sensor package includes a package body and a plurality of far infrared sensor array integrated circuits. The plurality of far infrared sensor array integrated circuits are disposed on a same plane and inside the package body. Each of the far infrared sensor array integrated circuits includes a far infrared sensing element array of a same size.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
There is provided a remote control system including a controlled device and a remote device. The controlled device has a light source and moves according to a control signal from the remote device. The remote device is adapted to be operated by a user and includes an image sensor. The remote device determines a moving direction of the controlled device according to an imaging position of the light source in the image captured by the image sensor and a pointing position of the user, and outputs the control signal.
Abstract:
A displacement detection device includes an image sensor, a light source and a processing unit. The image sensor is configured to successively capture images. The light source provides light with an emission frequency and an emission duration for the image sensor in capturing the images. The processing unit is configured to calculate a displacement according to the images and to adjust both the emission frequency and the emission duration according to the displacement.
Abstract:
There is provided a front side illuminated (FSI) semiconductor structure with improved light absorption efficiency which is configured to provide a reflecting layer on a bottom of the FSI semiconductor structure to enhance the light absorption efficiency, wherein the reflecting layer is manufactured in the packaging process or the semiconductor process.
Abstract:
There is provided a user interface system including a slave device and a master device. The slave device provides light of two different wavelengths to illuminate a finger surface, receives reflected light from the finger surface to generate a plurality of image frames, calculates and outputs an image data associated with a predetermined number of the image frames. The master device calculates a contact status and a displacement of the finger surface and a physiological characteristic of a user according to the image data.
Abstract:
A wireless transceiver coupled to a human interface device (HID) having a first coil is provided. The wireless transceiver includes a control module, a port, and a second coil. The control module includes a radio frequency (RF) unit, a conversion unit, and an electricity power unit. The RF unit is used to receive a RF signal outputted from the HID.The conversion unit coupled to the RF receiving unit is used to convert the RF signal to a data packet which is in accordance with the HID. The electricity power signal provides electricity power to the control module by the port. The electricity power unit drives the second coil according to the electricity power signal so that the second coil transmits an electromagnetic wave signal to the first coil of the HID by way of resonance and mutual inductance. Therefore, the wireless transceiver can charge to the HID wirelessly.