Abstract:
A headset controller takes a first touch sensor, a second touch sensor, a first pressure sensor, and a second pressure sensor as a control medium for users. The headset controller can generate four different output instructions by the users touching or pressing the operating interface. The headset controller integrates various sensing methods to generate the needed output instructions.
Abstract:
An object distance computing method, applied to an image sensor comprising a plurality of first type pixels. The first type of pixels comprises a first group and a second group of first type pixels. The method comprises: blocking a first part for each pixel for the first group of first type pixels, and blocking a second part for each pixel for the second group of first type pixels; retrieving a first image of an object via a non-blocked part of each pixel for the first group of first type pixels; retrieving a second image of an object via a non-blocked part of each pixel of the second group of first type pixels; combining the first image and the second image to generate a first combined image; and computing first distance information for the object and the image sensor according to a blur level of the first combined image.
Abstract:
An imaging device including a condenser lens and an image sensor is provided. The image sensor is configured to sense light penetrating the condenser lens and includes a pixel matrix, an opaque layer, a plurality of microlenses and an infrared filter layer. The pixel matrix includes a plurality of infrared pixels, a plurality of first pixels and a plurality of second pixels. The opaque layer covers upon a first region of the first pixels and a second region of the second pixels, wherein the first region and the second region are mirror-symmetrically arranged in a first direction. The plurality of microlenses is arranged upon the pixel matrix. The infrared filter layer covers upon the infrared pixels.
Abstract:
There is provided an operating method of an image sensor including: storing a first charge from an optoelectronic circuit to a pixel buffer circuit within a first exposure period; storing a second charge from the optoelectronic circuit to the pixel buffer circuit within a second exposure period; transferring the first charge from the pixel buffer circuit to a first storage circuit outside of pixel circuits; transferring the second charge from the pixel buffer circuit to a second storage circuit outside of pixel circuits; and comparing the first charge with the second charge to output an analog image signal.
Abstract:
Glasses with gesture recognition function include a glasses frame and a gesture recognition system. The gesture recognition system is disposed on the glasses frame and configured to detect hand gestures in front of the glasses thereby generating a control command. The gesture recognition system transmits the control command to an electronic device to correspondingly control the electronic device.
Abstract:
Disclosed are a portable electronic device and an operation method thereof. The portable electronic device comprises a body, a barcode detector and a barcode decoder. In the barcode detector, a first image capturing module continually captures a barcode image when the portable electronic device is operating in the resting mode, a first buffering module temporarily stores the captured barcode image, and a first image processing module processes the stored barcode stored and counts a number of times when the barcode image has a predetermined pattern feature. When the number of times reaches to a threshold number, the barcode decoder is turned on to capture and decode the barcode image, and the barcode detector is switched to operate in a power-saving mode.
Abstract:
An optical detecting device capable of increasing signal-to-noise ratio (SNR) and economizing power consumption is installed on a wearable device. The optical detecting device includes a base, an optical detecting component and a light emitting module. The optical detecting component is disposed on the base and has a detecting surface normal vector. The light emitting module is disposed on the base and outputs a sampling signal to project onto an external object, and the optical detecting component can receive the sampling signal reflected from the external object. The light emitting module is slanted toward the optical detecting component, and an optical axis of spatial distribution of the sampling signal and the detecting surface normal vector are crossed to form a deviated angle.
Abstract:
An image sensor comprising: an image sensing matrix, comprising at least one image sensing unit, for generating at least one image sensing signal according to a sensed image; an analog to digital converter, for converting the image sensing signal to a digital image sensing signal; an adjusting unit, for adjusting the digital image sensing signal to be an adjusted digital image sensing signal according to at least one adjusting parameter and the digital image sensing signal; an operational circuit, for computing at least part of brightness of the sensed image sensed by the image sensing unit according to the adjusted digital image sensing signal to generate at least one operational brightness signal; and a control unit, for adjusting the adjusting parameter, such that brightness information generated based on brightness values, which corresponds to the operational brightness signal, falls in a predetermined range.
Abstract:
There is provided a pupil tracking device including an active light source, an image sensor and a processing unit. The active light source emits light toward an eyeball alternatively in a first brightness value and a second brightness value. The image sensor captures a first brightness image corresponding to the first brightness value and a second brightness image corresponding to the second brightness value. The processing unit identifies a brightest region at corresponding positions of the first brightness image and the second brightness image as an active light image.
Abstract:
An object distance computing method, applied to an image sensor comprising a plurality of first type pixels. The first type of pixels comprises a first group and a second group of first type pixels. The method comprises: blocking a first part for each pixel for the first group of first type pixels, and blocking a second part for each pixel for the second group of first type pixels; retrieving a first image of an object via a non-blocked part of each pixel for the first group of first type pixels; retrieving a second image of an object via a non-blocked part of each pixel of the second group of first type pixels; combining the first image and the second image to generate a first combined image; and computing first distance information for the object and the image sensor according to a blur level of the first combined image.