Abstract:
A method of control Maximum Transmission Unit (MTU) reporting and discovery using AT commands is proposed. In communications networks, the MTU of a communication protocol of a layer is the size (in bytes or octets) of the largest protocol data unit that the layer can pass onwards. In an IP network, IP packets may be fragmented if the supported MTU size is smaller than the packet length. In accordance with one novel aspect, the packet data protocol (PDP) context of a packet data network (PDN) connection comprises MTU information. By introducing MTU information to the PDP contexts, TE can use AT commands to query MTU parameters from the network and thereby avoid fragmentation. TE can also use AT command to set MTU parameters and thereby control MTU discovery.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. In one embodiment, The UE requests to switch the DL multicast traffic from the multicast MBMS bearer to the unicast EPS bearer upon detecting that the UE is approaching an MBMS coverage boundary. In another embodiment, the UE transmits an indication of preferred target cells to the network before performing a handover and thereby maintaining multicast service continuity of the group communication.
Abstract:
A method of applying a network forbidden list for enhanced service recovery in mobile communication networks is provided. In a first embodiment, upon receiving an error cause for a RAT in a selected network, a UE stores a PLMN ID, the RAT information, and the error cause as an entry in the forbidden list. The UE will not select to the RAT of the network stored in the forbidden list until the PLMN/RAT entry is removed from the forbidden list. In a second embodiment, upon receiving an error cause in a selected network, a UE stores a PLMN ID, the error cause, and a timer value as an entry in the forbidden list. The UE will not select to the network stored in the forbidden list until the timer associated with the PLMN ID is expired.
Abstract:
Various examples pertaining to reflective quality of service (QoS) control in wireless communications are described. A user equipment (UE) receives from a wireless network control signaling that activates support of reflective QoS by the UE. The UE determines whether a predefined condition exists. The UE then indicates to the wireless network a change in a capability of the UE to support the reflective QoS responsive to the determining indicating that the predefined condition exists. When the UE receives from the wireless network control signaling that activates support of reflective QoS by the UE, the UE deletes one or more UE-derived QoS rules among a plurality of active UE-derived QoS rules each with a respective reflective QoS (RQ) timer running.
Abstract:
A method to manage call continuity in a network environment including a circuit-switched network and an IP multimedia subsystem (IMS) network is provided. A UE monitors one or more ongoing sessions in an IMS network, and the ongoing sessions contain at least one conference call. The UE detects a network-switching event for the UE to switch from the IMS network to a circuit-switched CS network. The UE then determines the one or more ongoing sessions within the IMS network to be released or transferred to the CS network. Finally, the UE performs a session transfer procedure for transferring the determined sessions.
Abstract:
A method of control Maximum Transmission Unit (MTU) reporting and discovery using AT commands is proposed. In communications networks, the MTU of a communication protocol of a layer is the size (in bytes or octets) of the largest protocol data unit that the layer can pass onwards. In an IP network, IP packets may be fragmented if the supported MTU size is smaller than the packet length. In accordance with one novel aspect, the packet data protocol (PDP) context of a packet data network (PDN) connection comprises MTU information. By introducing MTU information to the PDP contexts, TE can use AT commands to query MTU parameters from the network and thereby avoid fragmentation. TE can also use AT command to set MTU parameters and thereby control MTU discovery.
Abstract:
Aspects of the disclosure provide a method for reflective quality of service (QoS) control and management at a user equipment (UE). The method can include creating a derived QoS rule belonging to a session and having a QoS flow identifier (QFI). The derived QoS rule includes a precedence value that is set to one of a precedence value associated with a session identifier (ID) of the session received from a core network (CN) of a wireless communication system during a session establishment procedure for establishing the session, a precedence value associated with the QFI received from the CN during the session establishment procedure for establishing the session or when a downlink QoS flow having the QFI is added to the session, or a precedence value that is defined by an operator of the wireless communication system.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. In one embodiment, the access information comprises mapping information between the TMGI and the communication group ID.
Abstract:
Methods and apparatus are provided to reduce service interruption for intra-RAT and inter-RAT handover procedures. The UE performs a NAS signaling procedure via a NAS signaling connection in a mobile communication network. The UE monitors a radio resource status and determines whether a radio bearer has been or is being established for a RRC connection for data transmission. The UE determines whether to release the NAS signaling connection after completing the NAS signaling procedure based on whether the radio bearer has been established. In one embodiment, the UE monitors a radio resource status and determines whether a radio bearer has been established for a RRC connection for data transmission. The UE determines whether to start a timer upon completing the NAS signaling procedure based on whether the radio bearer has been or is being established.
Abstract:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several user plane (U-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. The proposed On-demand Reconfiguration U-Plane Architecture (ORUA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.