Abstract:
A wall-mounted keypad may include a light detector circuit located inside the keypad that is configured to measure an ambient light level in a space. The light detector circuit may receive ambient light through an aperture that is hidden from view by the keypad. The keypad may include a reflector for directing ambient light onto the light detector circuit. The keypad may include an enclosure that houses the light detector circuit. The enclosure may define a recess that exposes at least a portion of the light detector circuit. The enclosure may include a reflector that may focus ambient light received through the aperture onto the light detector circuit. The keypad may include a control circuit that may be configured to illuminate the indicia of respective buttons of the control device in response to actuations of the one or more buttons, in accordance with the measured ambient light level.
Abstract:
A wall-mounted dimmer may include an actuator assembly configured to translate a touch interaction with the dimmer into a desired dimming level. The actuator assembly may include a control interface having a resilient, deflectable membrane, a plurality of force-sensitive impedance members supported by the membrane, and an actuator configured to transfer a touch along the actuator to the membrane, causing the membrane to actuate one or more corresponding force-sensitive impedance members. The force-sensitive impedance members may be configured to make contact with corresponding ones of a plurality of open circuit pads supported by a printed circuit board. Each of the plurality of open circuit pads may correspond to a predetermined dimming level applied to a lighting load electrically connected to the dimmer. The control interface may be configured such that contact between the force-sensitive impedance members and corresponding ones of the open circuit pads is pressure sensitive.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.
Abstract:
Remote control devices may control electrical loads and/or load control devices of a load control system without accessing electrical wiring. The remote control device may be mounted over a mechanical switch that is installed in a multi-gang wallbox adjacent to a second electrical device, such as another mechanical switch or an electrical receptacle. The second electrical device may be recessed with respect to the remote control device and may be brought forward towards a front surface of the adapter by loosening a first set of screws that attach a yoke of the second electrical device to the multi-gang wallbox, and tightening a second set of screws that attach the adapter to the yoke of the second electrical device. The remote control device may comprise one or more configurable attachment members for attaching the adapter to the yoke of the mechanical switch and/or to the yoke of the second electrical device.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.