Abstract:
Embodiments of the present invention provide a wireless communications method, apparatus, and system. A terminal is provided. The terminal sets up a connection to a first base station, and stays in always connected mode. Therefore, when the terminal moves in a dense network, handovers of the first base station can be reduced. Further, when the terminal moves in the dense network, frequent signaling interaction is reduced, paging load in the entire network is reduced, and an end-to-end delay in service setup and transmission is reduced.
Abstract:
An uplink synchronization processing method, a user equipment (UE), and a base station are provided. The method includes: receiving a component carrier (CC) uplink synchronization indication message sent by a base station, where the uplink synchronization indication message carries identification information of one or multiple newly configured CCs; sending synchronization signaling to the base station when knowing that the uplink synchronization needs to be executed on all or a part of the one or multiple newly configured CCs corresponding to the identification information; and receiving a time advanced (TA) adjusting message that is sent by the base station according to the synchronization signaling, and applying a TA value carried in the TA adjusting message to the CC on which the uplink synchronization needs to be executed.
Abstract:
A method and a device for establishing an evolved packet system EPS bearer are disclosed. The method includes establishing, by a first base station to which UE belongs, a first EPS bearer based on a first CC for the UE, wherein the first EPS bearer is an EPS bearer between the first base station and the UE; and instructing, by the first base station, a second base station to establish a second EPS bearer based on a second CC for the UE, wherein the second EPS bearer is an EPS bearer between the second base station and the UE. The present invention enables the UE to aggregate carriers of different frequency ranges from the first base station to which the UE belongs and the second base station to which the UE belongs to transmit data, thus improving the throughput of the data transmitted by the UE.
Abstract:
A method and a device for establishing an evolved packet system EPS bearer are disclosed. The method includes establishing, by a first base station to which UE belongs, a first EPS bearer based on a first CC for the UE, wherein the first EPS bearer is an EPS bearer between the first base station and the UE; and instructing, by the first base station, a second base station to establish a second EPS bearer based on a second CC for the UE, wherein the second EPS bearer is an EPS bearer between the second base station and the UE. The present invention enables the UE to aggregate carriers of different frequency ranges from the first base station to which the UE belongs and the second base station to which the UE belongs to transmit data, thus improving the throughput of the data transmitted by the UE.
Abstract:
User equipment includes a receiving module configured to receive first indication information sent by a first base station. The first indication information includes a time period required by the user equipment to request to access a second base station. The user equipment includes a sending module to send the random access scrambling code to the second base station. The user equipment further includes a notification module to notify the first base station that a secondary cell group failure occurs if the user equipment fails to access the second base station within the time period.
Abstract:
A handover method and a base station are provided. The handover method may include: when a UE needs to be handed over, obtaining bearer context information of the UE in a first base station; sending a handover request to a target base station, where the handover request carries the bearer context information; and after receiving a handover response that is returned by the target base station and indicates that the handover is agreed to, sending a handover command to the UE so that the UE is handed over to the target base station. Based on the above technical solutions, the UE handover can be implemented quickly in the case of using multiple carriers and the current service of the UE can be recovered quickly, which can improve communication experience of a user.
Abstract:
A random access method, an evolved Node B (eNB), and a terminal equipment are provided. The method includes: determining target component carriers to which a User Equipment (UE) is to be handed over, and notifying the UE of information about the target component carriers through a source eNB; and after receiving a dedicated random access preamble sent by the UE, sending a random access response message on at least one component carrier in the target component carriers. The terminal equipment includes: a handover command receiving unit, a sending unit, and a random response receiving unit. Therefore, in a random access procedure of cell handover, the eNB is capable of determining downlink component carriers that a UE monitors, thereby increasing utilization rate of downlink resources.
Abstract:
A random access method, an evolved Node B (eNB), and a terminal equipment are provided. The method includes: determining target component carriers to which a User Equipment (UE) is to be handed over, and notifying the UE of information about the target component carriers through a source eNB; and after receiving a dedicated random access preamble sent by the UE, sending a random access response message on at least one component carrier in the target component carriers. The terminal equipment includes: a handover command receiving unit, a sending unit, and a random response receiving unit. Therefore, in a random access procedure of cell handover, the eNB is capable of determining downlink component carriers that a UE monitors, thereby increasing utilization rate of downlink resources.
Abstract:
A communication method and apparatus are applied to fields such as V2X, vehicle to everything, an intelligent connected vehicle, assisted driving, and intelligent driving. The method includes: a first terminal device determines a first new data indicator NDI based on an identifier of a first destination address and an identifier of a first hybrid automatic repeat request HARQ process, where the first NDI is included in first sidelink control information SCI, and the first SCI is used to schedule first data; and the first terminal device sends, through a sidelink, the first SCI and/or the first data to a second terminal device.
Abstract:
A method for monitoring a physical downlink control channel, a communications device, and a network device, the method including monitoring, by a communications device based on the wake-up signal and at least one bandwidth part (BWP), at least one physical downlink control channel, wherein the at least one BWP corresponds to the wake-up signal, and the at least one physical downlink control channel is a physical downlink control channel of at least one BWP indicated by the at least one wake-up signal.