Abstract:
A heated, split thermowell comprises a cylindrical shank and integral, axially extending, part-cylindrical probes spaced by at least a first gap defined by a bilateral plane. The thermowell is mounted to the sidewall of a pressure vessel for communicating through a penetration in the sidewall with the fluid state in the pressure vessel. Each probe has at least one parallel axial bore therein, a related, selected pair of probes receiving respective heater and temperature sensing elements in the associated bores, and together functioning as a differential temperature sensor producing distinguishable, differential temperature outputs representative of the fluid condition of steam versus water. Duplex sensor embodiments permit toggling between different, selected such pairs of probes for on-line testing and verification of monitored conditions and operability of the elements and supporting circuits, with automatic substitution of complementary elements in the event of element failure. Each thermowell also permits on-line replacement of a failed element.
Abstract:
A thermally self-adjusting mount for a proximity sensor for detecting movement of a turbine blade tip within a turbine housing includes an elongated chamber in an interior wall of the turbine housing adjacent the path of travel of the turbine blade tip. The chamber is configured to receive a blade tip sensor therein and accommodate relative movement of the sensor toward and away from the path of travel of the blade tip. A thermally expansive element is operable coupled with the sensor for moving the latter in the chamber toward the path of travel of the blade tip upon heating of the sensor. A spring is provided for maintaining the sensor in contact with the thermally expansive element during both expansion and contraction of the latter. The thermally expansive member is capable, upon being heated to any given temperature, of causing movement of the sensor in the chamber and relatively toward the path of travel of the blade tip a distance which is substantially the same as the linear movement of the wall away from the path of travel due to having been heated to the same temperature. Thus, the spatial relationship between the sensor and the path of travel of the blade tip remains the same at different temperatures.
Abstract:
Fluid flow is determined for a large flow pipe based upon differential pressure across an orifice in the pipe having a known cross-sectional area. In one form, the orifice is variable and adjusted in response to differential pressure so as to maintain differential pressure at a constant value. Flow is determined directly from orifice area. The orifice may be a part of a closed loop flow measurement system which responds to differential pressure changes to adjust orifice area. Various differential pressure settings may be used to accommodate selected back pressures in the flow pipe.
Abstract:
A method is disclosed for eliminating aberrations in position-time data provided by an apparatus which monitors the position of a rotating blade in a turbo machine as a function periodic rotation, the apparatus including at least one sensor adjacent at least one blade position to provide a time signal corresponding to the actual arrival time required for a blade to move from a predetermined position to the at least one sensor position, the aberrations being caused by misalignment or movement of the at least one sensor with respect to a rotating blade. The method comprises the steps of first calculating an average blade arrival time for blade movement from the predetermined position to the at least one sensor position, and then estimating sensor position relative to the predetermined position based on blade velocity and average arrival time. Alternatively, measured displacements between blade position and sensor position at the average blade arrival time may be used to derive a time signal indicative of blade vibration.
Abstract:
A liquid-filled tube placed next to a generator winding section provides an indication of an abnormal hot spot which may develop along the winding. The tube is filled with a liquid which vaporizes to form a vapor bubble at the hot spot location. Acoustic energy is projected through the liquid in the tube and is normally received at the distal end of the tube. Presence of a vapor bubble blocks the acoustic propagation and forms a reflective surface for the acoustic energy which then is utilized to calculate distance to the vapor bubble. With a known pressure versus temperature relationship, the pressure of the liquid is controlled such that the hot spot temperature may be determined.
Abstract:
A method is provided for monitoring velocity of a fluid flow through a predetermined fluid flow space. A fiber optic conductor includes a flow measurement portion defining an elongated dimension extending across a portion of the fluid flow space. The fluid flow in the fluid flow space causes the measurement portion of the fiber optic conductor to flex in a direction transverse to the elongated dimension. Optical radiation is supplied to the fiber optic conductor, and optical radiation is received from the fiber optic conductor after the supplied optical radiation has passed through the measurement portion. The received optical radiation is analyzed to effect a determination of a flow velocity of the fluid flow.
Abstract:
Apparatus (12) to measure blade vibration in a gas turbine engine (8). An illumination source (20) generates a sequence of illumination bursts in a field of view capturing a passing rotating blade (10) of the gas turbine engine. An imager (22) generates image data including a series of images capturing views of the passing rotating blade. The images are exposed in response to respective illumination bursts. A controller (30) is configured to process the series of images to identify one or more vibration modes of the rotating blade.
Abstract:
A magnetic flux sensor for measuring the radial component of the magnetic flux impinging on a stator bar of a high voltage generator. The magnetic flux sensor includes a fiber Bragg grating formed in an optical fiber and enclosed within a magnetostrictive coating. The magnetostrictive coating responds to changes in magnetic flux by applying a strain on the fiber that changes the reflected wavelength of the Bragg grating that can be measured to provide a measurement of the flux. In one embodiment, one or more of the magnetic flux sensors is positioned directly within an insulating layer of the particular stator bar.
Abstract:
The claimed invention provides a blade vibration measuring system comprising a blade, a transmitter, a target with non parallel edges located on the blade shroud and a receiver. The present invention also provides a blade adapted for measuring blade vibration. Furthermore, the claimed invention provides a method for monitoring blade vibration.
Abstract:
A method for predicting a blade structure failure within a coupled blade structure including a plurality of blades supported for rotation on a rotor and a shroud structure coupling the blades. The method includes the steps of determining displacements of a plurality of predetermined circumferential locations on the shroud structure during rotation of the blade row, where the displacements are provided as a function of time relative to the periodic rotation of the shroud structure for time intervals that are integer multiples of rotor rotation. A signal characteristic related to vibrational mode and a nodal diameter of the shroud structure is derived based on the displacements of the circumferential locations on the shroud structure.