Abstract:
Representation and coding of multi-view images using tapestry encoding are described for standard and enhanced dynamic ranges compatibility. A tapestry comprises information on a tapestry image, a left-shift displacement map and a right-shift displacement map. Perspective images of a scene can be generated from the tapestry and the displacement maps. Different methods for achieving compatibility are described.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
Input VR imagery is received. Global motions as represented in the input VR imagery relative to a viewer of a virtual reality (VR) application is extracted. A dampening factor is applied to the global motions to generate dampened global motions. VR imagery to be rendered to the viewer at a time point is generated based on the input VR imagery and the dampened global motions.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
Representation and coding of multi-view images using tapestry encoding are described. A tapestry comprises information on a tapestry image and a world coordinates map associated with the tapestry image, each of which may contain information from one or more perspectives of a scene. Perspective images of a scene can be generated from the tapestry image and the world coordinates map.
Abstract:
High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
One or more derived versions of image content may be obtained by interpolating two or more source versions of the same image content. A derived version may be targeted for a class of displays that differs from classes of displays targeted by the source versions. Source images in a source version may have been color graded in a creative process by a content creator/colorist. Interpolation of the source versions may be performed with interpolation parameters having two or more different values in two or more different clusters in at least one of the source images. A normalized version may be used to allow efficient distribution of multiple versions of the same content to a variety of downstream media processing devices, and to preserve or restore image details otherwise lost in one or more of the source versions.