Abstract:
A local network element on an enterprise network caches Domain Name System (DNS) responses in association with user identifiers in accordance with a DNS-based access control policy. The network element receives a DNS request from a first endpoint device. The DNS request includes a domain name to resolve. The network element forwards the DNS request to a domain name server along with a first user identifier associated with the first endpoint device. The network element receives a DNS response from the domain name server. The DNS response includes a network address associated with the domain name, as well as the first user identifier and at least one other user identifier. The network element stores the network address in a DNS cache as a cached DNS response for the domain name. The cached DNS response is stored in association with the first user identifier and the other user identifier(s).
Abstract:
In one embodiment, a Domain Name Service (DNS) server pre-fetches domain information regarding a domain that includes certificate information for the domain. The DNS server receives a DNS request that includes a security request for the domain in metadata of a Network Service Header (NSH) of the DNS request. The DNS server retrieves the certificate information for the domain from the pre-fetched information regarding the domain, in response to receiving the security request. The DNS server sends, to a Transport Layer Security (TLS) proxy, a DNS response for the domain that includes the certificate information in metadata of an NSH of the DNS response.
Abstract:
A service classifier network device receives a subflow and identifies that the subflow is one of at least two subflows in a multipath data flow. Related data packets are sent from a source node to a destination node in the multipath data flow. The service classifier generates a multipath flow identifier and encapsulates the subflow with a header to produce an encapsulated first subflow. The header identifies a service function path and includes metadata with the multipath flow identifier.
Abstract:
In one embodiment, a first request may be received from a first endpoint to access a cloud-based conference platform. The first request can include a first access token. Based at least on the first request, a first certificate may be provided to the first endpoint, wherein the first certificate may not include an identity of the first endpoint. A second request may be received from a second endpoint to access the cloud-based conference platform. The second request can include a second access token. Based at least on the second request, a second certificate can be provided to the second endpoint, wherein the second certificate may not include an identity of the second endpoint. Data can be routed within the cloud-based conference platform between the first endpoint and second endpoint based at least upon the first certificate and the second certificate.
Abstract:
A first service node receives a message configured to set up a secure communication session between a client and a server, in which the first service node acts as a proxy. Data packets in the secure communication session are subject to multiple service functions that require decryption of the data packets. A service function chain assigns a service node to each of the service functions. A service header is generated including metadata instructing the service nodes other than the first service node not to act as proxies in the secure communication session. The message and the service header are transmitted to a second service node in the service function chain.
Abstract:
In one implementation, a media stream is recorded using one or more keys. The one or more keys are also encrypted. The one or more encrypted keys may be stored with the encrypted media session at a cloud storage service. A network device receives a request to record a media stream and accesses at least one stream key for the media stream. The stream key is for encrypting the media stream. The network device encrypts the stream key with a master key. The encrypted stream key is stored in association with the encrypted media stream.
Abstract:
An interposer is provided that is configured to interpose into an application security protocol exchange by obtaining application session security state. The interposer does this without holding any private keying material of client or server. An out-of-band Security Assistant Key Escrow service (SAS/SAKE) is also provided. The SAKE resides in the secure physical network perimeter and holds the private keying material required to derive session keys for interposing into application security protocol. During a security protocol handshake, the interposer sends SAKE security protocol handshake messages and in return receives from the SAKE session security state that allows it to participate in application security protocol.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
In one embodiment, an endpoint elicits a pattern of STUN responses to identify security devices located on a call path. The endpoint then uses address information from the identified security devices to establish an efficient media flow with a remote endpoint. The endpoint can optimize the number of network devices and network paths that process the endpoint's keepalive message. Additionally, the endpoint may request custom inactivity timeouts with each of the identified security devices for reducing bandwidth consumed by keepalive traffic.
Abstract:
In one embodiment, a reservation proxy monitors for received connectivity check messages or beginning-of-media-flow indication messages. When either type of message is observed, the reservation proxy requests resource allocation for a media flow associated with the received message. The amount of resource allocation requested may be coordinated by exchanging messages with a call controller or policy server for one of the endpoints of the media flow, or the amount of resource allocation may be identified within the received message.