Abstract:
Preparation methods for a pixel defining layer and an OLED, a pixel defining element, an OLED, and a display device are disclosed. The method for preparing a pixel defining layer comprises: providing a substrate; forming a first defining pattern on the substrate, wherein the first defining pattern is composed of a concave accommodation groove, and the concave accommodation groove is formed by ink jet printing a first material, forming a first defining pattern layer in a predetermined region of the substrate, and then subjecting the first defining pattern layer to a drying treatment; forming a second defining pattern by ink jet printing a second material in the concave accommodation groove, wherein the first defining pattern and the second defining pattern constitute the pixel defining layer.
Abstract:
Disclosed is an organic light-emitting display substrate, including a substrate and a pixel defining layer on the substrate which includes a plurality of dams crisscrossing in a display area of the substrate to define a plurality of pixel units and define the boundary of the display area, wherein the pixel defining layer further includes a groove arranged on a top surface of each dam, the grooves at least define one frame-shaped area, at least one pixel unit is arranged in each frame-shaped area, and the grooves are used for accommodating a solvent when forming an organic light-emitting element by inkjet printing. Also disclosed is a manufacturing method of an organic light-emitting display substrate and a display device. The present invention can improve the film forming effect of a film layer formed on the substrate, so that the brightness of a display image of the display device is more uniform.
Abstract:
The present invention discloses a pixel unit, which comprises a pixel defining layer defining a pixel region, a first electrode within a central area of the pixel region, an organic-light-emitting-display-device functional layer formed within the pixel region and on the first electrode, and a second electrode formed on the organic-light-emitting-display-device functional layer, an area of a bottom plane of the organic-light-emitting-display-device functional layer being larger than that of an upper surface of the first electrode. The pixel defining layer comprises first and second pixel defining portions having ring-shaped structures, the first pixel defining portion has an inner side surface defining the pixel region, and the second pixel defining portion has an outer side surface in contact with the inner side surface of the first pixel defining portion, and is disposed around the first electrode. The first pixel defining portion has a thickness greater than the second pixel defining portion.
Abstract:
The present invention relates to the field of display technology, particularly to a pixel defining layer, an organic electroluminescent device and a display device. The pixel defining layer comprises a first defining layer on an array substrate and a second defining layer on the first defining layer, wherein the first defining layer is made of a lyophilic inorganic material, and the second defining layer is made of a lyophobic organic material. The present invention provides a pixel defining layer, an organic electroluminescent device and a display device, wherein ink-jet printing technology is used to patternize pixels of an organic material, which serves as not only a protective layer on the first inorganic material layer during dry etching, but also a lyophobic layer on the second layer; the making of the double-layered pixel defining layer omits the process of using two masks, which can effectively reduce costs and improve production efficiency.
Abstract:
Provided is an array substrate, comprising a plurality of opening regions. The array substrate further comprises a substrate and at least one functional layer stacked on one side of the substrate. The functional layer comprises a plurality of functional patterns and at least one supplementary pattern, the plurality of functional patterns are configured to transmit electrical signals, and there is a gas region between the plurality of functional patterns; the at least one supplementary pattern is at least provided in at least one opening region, and the supplementary pattern is located in the gap region between the plurality of functional patterns. The plurality of functional patterns and the at least one supplementary pattern are spaced apart, and the plurality of functional patterns and the at least one supplementary pattern are arranged at substantially equal intervals.
Abstract:
A display substrate having a display area is provided. The display substrate includes a base and a plurality of light-emitting devices disposed on the base and located in the display area. Each light-emitting device includes a light-emitting portion. In at least one light-emitting device, the light-emitting portion is manufactured using an ink-jet printing process. Distances from a plurality of selected points on an edge of an orthographic projection of the light-emitting portion manufactured using the ink-jet printing process on the base to a center of the orthographic projection are equal. Using the center of the orthographic projection as a center of a circle and a distance from a selected point in the plurality of selected points to the center of the orthographic projection as a radius, the plurality of selected points are distributed on the circle at equal intervals.
Abstract:
There is provided an organic light-emitting diode including: a pixel defining layer on a substrate and having a plurality of openings for defining pixel regions, wherein each pixel region is a region including one pixel therein; a plurality of first pixel electrodes on the substrate and in the plurality of openings, respectively, each first pixel electrode being at a peripheral portion of a corresponding opening adjacent to the pixel defining layer; and a plurality of second pixel electrodes on the substrate and in the plurality of openings, respectively, each second pixel electrode being at a central portion of the corresponding opening. Each first pixel electrode is between the pixel defining layer and a corresponding second pixel electrode, and the plurality of first pixel electrodes and the plurality of second pixel electrodes are in a same layer. Each first pixel electrode includes a shape memory alloy material.
Abstract:
A pixel defining structure includes a first sub-pixel defining structure surrounding a first sub-pixel region configured to form a first sub-pixel having a first color. The first sub-pixel defining structure includes a lyophilic portion one the bottom side of the first sub-pixel region and a lyophobic portion on a side opposite to the bottom side. The pixel defining structure includes a second sub-pixel defining structure surrounding a second sub-pixel region configured to form a second sub-pixel having a second color. The second sub-pixel defining structure includes a lyophilic portion one the bottom side of the second sub-pixel region and a lyophobic portion on a side opposite to the bottom side. The second color is different from the first color. Thicknesses of the lyophilic portion of the first sub-pixel defining structure and the lyophilic portion of the second sub-pixel defining structure are different.
Abstract:
A condensation assembly includes a condensation plate and a plurality of sumps. The condensation plate includes a plate body and a plurality of protrusions on a surface of the plate body, and the plurality of protrusions are spaced apart. The plurality of sumps are disposed at a side of the plurality of protrusions away from the plate body. Each sump of the plurality of sumps is disposed opposite to at least one of the plurality of protrusions, and has an opening facing the at least one protrusion disposed opposite to the sump. There is a gap between the plurality of sumps and the condensation plate.
Abstract:
There are provided an OLED device, a manufacturing method thereof, and a display apparatus. The OLED device includes: a first substrate; at least one auxiliary electrode disposed on the first substrate; a pixel defining structure disposed on the first substrate; and a plurality of light emitting units disposed on the first substrate. Each light emitting unit includes a first electrode, a second electrode and a light emitting layer, and the first electrode is located on a side of the second electrode distal to the first substrate, and the light emitting layer is located between the first electrode and the second electrode. The auxiliary electrode is disposed inside the pixel defining structure and electrically coupled to the first electrode.