Abstract:
Structures, methods, and apparatus that provide connector receptacles that have a reduced tendency to scratch and otherwise mar connector inserts, have an aesthetically-pleasing appearance, and have an improved tactile response when inserts are inserted. Various examples reduce scratches and wear by utilizing domes, cylinders, balls, or other structures as finger contacts in a connector receptacle. Another example provides aesthetically-pleasing connector receptacle enclosures by forming receptacle enclosures using the same type of material, or material having the same or similar color or texture, as is used for enclosing the electronic device that includes the receptacle. Another example provides an aesthetically-pleasing receptacle enclosure by forming receptacle enclosures that are, in part or in whole, contiguous or formed with the housing. Another embodiment provides a connector receptacle having a housing where a portion of the housing has been removed to save space.
Abstract:
Connector systems may include a connector receptacle and connector plug or insert. The connector receptacle may include a tongue. A first plurality of contacts may be formed on a top surface of the tongue. A first ground pad may be located on a top surface of tongue, and a shield may be formed around the tongue. The connector insert may include a housing and a conductive shield around the housing behind a leading edge of the connector insert. A front edge of the shield may be folded into an opening at the leading edge. In other examples, the receptacle shield may include one or more fingers. These fingers may contact the connector insert shield to form a ground path. One or more of these fingers may engage openings in the insert shield to provide a retention force between the connector insert and receptacle.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts to connect a vertical tongue to a horizontal printed circuit board. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a vertical side of the housing.
Abstract:
Connector receptacles having protective structures for connector contacts. One example may provide a connector receptacle having one or more contacts that are reinforced with a protective piece around a portion of the contact. Another example may provide a connector receptacle having two or more contacts reinforced with adjacent protective pieces to provide additional protective reinforcement. Another example may provide a connector receptacle having two or more contacts reinforced with interlocking protective pieces. These protective pieces may protect contacts in a connector receptacle from damage when a device, module, or connector insert is inserted into the connector receptacle at an oblique angle, when a device, module, or insert is stressed while in the receptacle, or when a device, module, or insert is removed from the receptacle at an oblique angle.
Abstract:
Low cost ground connections for standard connectors and connectors having reduced pin counts. One example may provide a connector system including a connector insert having a plurality of contacts along a top or bottom, or both top and bottom, of a connector insert, where first contacts in the plurality of contacts may be used to convey power, ground, or data and where second contacts in the plurality of contacts are used for ground. The second contacts may be arranged to have contacting portions that are positioned in the insert at different heights relative to the top or bottom of the connector insert and at different depths relative to a front opening of the connector insert.
Abstract:
Connector systems that may include improved locking and retention features. One example includes a connector plug having an opening to accept an end of a wide portion of a connector receptacle tongue. Another connector plug may include top and bottom rails for holding a wide portion of a connector receptacle tongue. The locking and retention features may provide a large locking force. Further examples may accordingly provide unlocking features.
Abstract:
Connector inserts having a high signal integrity and low insertion loss by shielding signal contacts. One example may provide one or more ground contacts between a front opening and signal pins of a connector insert. These ground contacts may have sufficient lever arm to provide a good contact to a corresponding contact in a connector receptacle. To avoid excessive length in the connector insert, embodiments of the present invention may stack a portion of the ground contact above the signal contacts in the connector insert. To reduce excessive capacitance that would otherwise reduce signal impedance, one or more openings may be formed in the ground contacts. To prevent signal contacts from shorting to a shield through this opening, the opening may be covered by tape. The ground contacts may be positioned to avoid encountering power contacts in the receptacle when the insert is inserted into the receptacle.
Abstract:
Bus bar or power connector connections that are reliable and provide a reduced connection impedance. One example may provide a reliable connection by providing a spring plate. The spring plate may be arranged to hold a bus bar or other power conductor to a printed circuit board. The spring plate may further include an opening for a fastener, where the fastener is used to secure the bus bar to the printed circuit board. In this way, the spring plate may secure the bus bar to the printed circuit board in the event that the fastener is loosened or missing, thereby increasing the reliability of the bus bar connection. Further, the spring plate may provide an additional current path, thereby reducing the impedance of the bus bar connection.
Abstract:
Connector receptacles that may help maintain registration or alignment between a printed circuit board, a connector receptacle, and an opening in a device enclosure. One example may provide a connector receptacle having a housing including a passage. A pin may be placed in the passage such that a first portion extends away from a front of the housing and a rear portion extends away from a rear of the housing. The front portion may be arranged to fit in a cavity or opening in an inside surface of a device enclosure, while the rear portion may be arranged to fit in a cavity or opening in a top surface of a printed circuit board.
Abstract:
High-speed connectors having a high density of contacts may be provided. One example may provide a connector having a housing with a slot forming an opening in a top side. The slot and opening may be arranged to receive a card. This connector may provide a high density of contacts by arranging the contacts in multiple rows in the slot. Various contacts may include barbs to be inserted into the housing. The barbs may be angled and may have one or more teeth to help anchor the contacts in place. A conductive or nonconductive shield or shell may be placed over the housing. When a conductive shield is used, metal pins may be inserted into the housing for mechanical stability and secured to the shield, and various contacts may have contacting portions in contact with the shield to improve signal integrity.