Abstract:
Circuits, methods, and apparatus that may reduce the number of connector receptacles that are needed on an electronic device. One example may provide a unified connector and circuitry that may be capable of communicating with more than one interface.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts to connect a vertical tongue to a horizontal printed circuit board. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a vertical side of the housing.
Abstract:
Connector systems may include a connector receptacle and connector plug or insert. The connector receptacle may include a tongue. A first plurality of contacts may be formed on a top surface of the tongue. A first ground pad may be located on a top surface of tongue, and a shield may be formed around the tongue. The connector insert may include a housing and a conductive shield around the housing behind a leading edge of the connector insert. A front edge of the shield may be folded into an opening at the leading edge. In other examples, the receptacle shield may include one or more fingers. These fingers may contact the connector insert shield to form a ground path. One or more of these fingers may engage openings in the insert shield to provide a retention force between the connector insert and receptacle.
Abstract:
Techniques and apparatus for providing one or more holes in a housing for an electronic device are disclosed. The one or more holes in the housing can be used to facilitate visual indicators. A light source can be controlled to provide light into a hole and thus emit light from the hole. When the light source is not providing light to the hole, the hole can be visually disguised (e.g., camouflaged) so it blends with the surrounding portions of the housing. The electronic device can, for example, be a small electronic device, such as a portable or handheld electronic device.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts to connect a vertical tongue to a horizontal printed circuit board. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a vertical side of the housing.
Abstract:
Connector inserts having a high signal integrity and low insertion loss by shielding signal contacts. One example may provide one or more ground contacts between a front opening and signal pins of a connector insert. These ground contacts may have sufficient lever arm to provide a good contact to a corresponding contact in a connector receptacle. To avoid excessive length in the connector insert, embodiments of the present invention may stack a portion of the ground contact above the signal contacts in the connector insert. To reduce excessive capacitance that would otherwise reduce signal impedance, one or more openings may be formed in the ground contacts. To prevent signal contacts from shorting to a shield through this opening, the opening may be covered by tape. The ground contacts may be positioned to avoid encountering power contacts in the receptacle when the insert is inserted into the receptacle.
Abstract:
Connector inserts having retention features with good reliability and holding force. These connector inserts may include ground contacts that provide an insertion portion having a reduced length. These connector inserts may be reliable, have an attractive appearance, and be readily manufactured.
Abstract:
Connector inserts having contacts with a high-impedance for good signal integrity and low insertion loss, a pleasant physical appearance, and that may be reliably manufactured. One example may provide connector inserts having signal contacts with a high impedance in order to improve signal integrity to allow high data rates. Another may provide connector inserts having a pleasant appearance by providing features to prevent light gaps from occurring between a plastic tip at a front of the connector insert and a connector insert shield. Another may provide reliable manufacturing by crimping a cap used to secure a cable to a connector insert with a multi-section die, where contacting surfaces of the die include various points or peaks along their surface. These points may effectively wrinkle or jog the perimeter of the cap, thereby reducing the dimensions of a cross-section of the cable.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a top and the other three sides of the housing.
Abstract:
Connector inserts having a high signal integrity and low insertion loss by shielding signal contacts. One example may provide one or more ground contacts between a front opening and signal pins of a connector insert. These ground contacts may have sufficient lever arm to provide a good contact to a corresponding contact in a connector receptacle. To avoid excessive length in the connector insert, embodiments of the present invention may stack a portion of the ground contact above the signal contacts in the connector insert. To reduce excessive capacitance that would otherwise reduce signal impedance, one or more openings may be formed in the ground contacts. To prevent signal contacts from shorting to a shield through this opening, the opening may be covered by tape. The ground contacts may be positioned to avoid encountering power contacts in the receptacle when the insert is inserted into the receptacle.