Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may be provided with a satellite positioning system slot antenna. The slot antenna may include a slot in a metal housing. The slot may be directly fed or indirectly fed. In indirectly fed configurations, the antenna may include a near-field-coupled antenna feed structure that is near-field coupled to the slot. The near-field-coupled antenna feed structure may be formed from a planar metal structure. The planar metal structure may be a metal patch that overlaps the slot and that has a leg that protrudes towards the metal housing. A positive antenna feed terminal may be coupled to the leg and a ground antenna feed terminal may be coupled to the metal housing.
Abstract:
An electronic device may be provided with wireless circuitry that includes a radio-frequency transceiver circuit and an antenna. The antenna may be a patch antenna formed from a patch antenna resonating element and an antenna ground. The patch antenna resonating element may be formed from a metal patch on a printed circuit board. The antenna ground may be formed from a metal housing having a planar rear wall that lies in a plane parallel to the metal patch. The radio-frequency transceiver circuit may be coupled to the metal patch through traces on the printed circuit and may be coupled to rear wall of the housing through a screw and a screw boss in the housing. Buttons and other electrical components may be mounted on the printed circuit board and may be coupled to control circuitry on the printed circuit board through the metal patch.
Abstract:
An electronic device may be provided with slot antennas. A slot antenna may be formed from metal structures that have a dielectric gap defining an antenna slot. The metal structures may include multiple metal layers that overlap a plastic antenna window and that serve as capacitive electrodes in a capacitive proximity sensor. The metal structures may also include a metal electronic device housing. The metal electronic device housing and the metal layers may be formed on opposing sides of the antenna slot. The metal layers may have a notch that locally widens the antenna slot at an open end of the antenna slot. One of the metal layers may be shorted to the metal electronic device housing at an opposing closed end of the antenna slot. The antenna slot may be indirectly fed using a near-field-coupled antenna feed structure such as a metal patch that overlaps the antenna slot.
Abstract:
An electronic device has antennas formed from cavity antenna structures. The electronic device may have a metal housing. The metal housing may have an upper housing in which a component such as a display is mounted and a lower housing in which a component such as a keyboard is mounted. Hinges may be used to mount the upper housing to the lower housing for rotation about a rotational axis. Cavity antennas may be formed in a clutch barrel region located between the hinges and running along the rotational axis. A flexible printed circuit may be formed between the cavity antennas. Each cavity antenna may have a first end that is adjacent to one of the hinges and a second end that is adjacent to the flexible printed circuit. Cavity walls for the cavity antennas may be formed from metal housing structures such as metal portions of the lower housing.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.
Abstract:
An electronic device may have an antenna for providing coverage in wireless communications bands of interest such as a low frequency communications band, a middle frequency communications band, and a high frequency communications band. Slot structures in the antenna that might reduce efficiency in the high frequency communications band may be avoided by capacitively loading the antenna and omitting meandering paths in the antenna. A capacitor may be coupled between an antenna ground formed from a metal housing structure and an antenna resonating element having a curved shape that conforms to the shape of the edge of the electronic device. The capacitor may have interdigitated fingers and may be adjustable to tune the antenna. The antenna may transmit and receive radio-frequency signals through a display cover layer in a display and a dielectric antenna window portion of the housing.
Abstract:
An electronic device may be provided with antenna structures. Proximity sensors and other sensors may be used in determining how the electronic device is being operated. Wireless circuitry such as a radio-frequency transmitter associated with a cellular telephone communications band, a wireless local area network band, or other communications band may be used in transmitting radio-frequency signals through the antenna structures at a transmit power. Control circuitry may adjust the wireless circuitry to ensure that the transmit power is capped at a maximum transmit power. The maximum transmit power may be adjusted dynamically by the control circuitry based on data from the proximity sensors, data from a magnetic sensor that detects whether a cover is present on the device, a connector sensor that detects whether the device is coupled to a dock or other accessory, and other sensors.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include a single piece housing formed from a radio opaque material with a cover formed from a radio transparent material. To implement a wireless interface, an antenna stack-up can be provided that allows an antenna to be mounted to a bottom of the cover. Methods and apparatus are provided for improving wireless performance. For instance, in one embodiment, a metal housing can be thinned to improve antenna performance. As another example, a faraday cage can be formed around speaker drivers to improve antenna performance.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.