Abstract:
A fuel vapor processing apparatus includes a device that can restrict or prevent flow of gas from a vapor passage into a canister during recovering of fuel vapor from the canister into a fuel tank.
Abstract:
An adsorption/desorption device is communicated with an upper space of a fuel tank via a vapor passage. The adsorption/desorption device is configured to selectively adsorb or desorb air components contained in vapor. The adsorption/desorption device and the vapor passage are not communicated to the external atmosphere. The fuel tank is provided with a pressure detecting device for detecting the internal pressure of the fuel tank. A pressure regulating device is provided to the vapor passage for controlling and maintaining the pressure applied to the adsorption/desorption device. When the internal pressure of the fuel tank is higher than the atmospheric pressure, the internal pressure of the fuel tank is pressure-fed to the side of the adsorption/desorption device via the pressure regulating device until the internal pressure of the fuel tank becomes in equilibrium with the atmospheric pressure. When the internal pressure of the fuel tank is lower than the atmospheric pressure, vapor is pressure-fed to the side of the fuel tank via the pressure regulating device until the internal pressure of the fuel tank becomes in equilibrium with the atmospheric pressure.
Abstract:
A fuel vapor processing apparatus includes a container and an adsorption member positioned within the container. The adsorption member can adsorb a fuel vapor as a gas containing the fuel vapor flows through the adsorption member. A first electrode and a second electrode are attached to the adsorption member, so that the adsorption member can produce heat as a voltage is applied between the first and second electrodes across the adsorption member. The first and seconds electrodes are spaced from each other in a direction substantially parallel to the direction of flow of the gas through the adsorption member.
Abstract:
A fuel vapor processing apparatus includes a container and an adsorption member positioned within the container. The adsorption member can adsorb a fuel vapor as a gas containing the fuel vapor flows through the adsorption member. A first electrode and a second electrode are attached to the adsorption member, so that the adsorption member can produce heat as a voltage is applied between the first and second electrodes across the adsorption member. The first and seconds electrodes are spaced from each other in a direction substantially parallel to the direction of flow of the gas through the adsorption member.
Abstract:
A canister, for inhibiting a diffusion phenomenon in an adsorbent layer as much as possible and certainly adsorbing fed evaporated fuel to inhibit blow-by of the evaporated fuel into the atmosphere, is constituted by filling a first adsorbent layer of the canister with activated carbon A having a large evaporated fuel adsorption and a weak holding power, and filling a second and a third adsorbent layers with activated carbon B having an intermediate evaporated fuel adsorption and a weak holding power and therefore having characteristics that the residual amount of the low boiling point components in the evaporated fuel after purge is small, whereby after the high temperature standing of the canister, the discharge of the evaporated fuel into the atmosphere can be inhibited.
Abstract:
A canister, for inhibiting a diffusion phenomenon in an adsorbent layer as much as possible and certainly adsorbing fed evaporated fuel to inhibit blow-by of the evaporated fuel into the atmosphere, is constituted by filling a first adsorbent layer of the canister with activated carbon A having a large evaporated fuel adsorption and a weak holding power, and filling a second and a third adsorbent layers with activated carbon B having an intermediate evaporated fuel adsorption and a weak holding power and therefore having characteristics that the residual amount of the low boiling point components in the evaporated fuel after purge is small, whereby after the high temperature standing of the canister, the discharge of the evaporated fuel into the atmosphere can be inhibited.
Abstract:
This display includes a bracket member mounted on a display screen portion and a stand member including a pair of support portions, having an L-shaped cross section, mounted with the bracket member slid from above, while the bracket member includes a pair of first regulating portions regulating downward movement of the bracket member with respect to the stand member by coming into contact with the pair of support portions of the stand member respectively and a pair of second regulating portions regulating anteroposterior movement of the bracket member with respect to the stand member by anteroposteriorly holding the pair of support portions of the stand member respectively.
Abstract:
A fuel vapor recovery system has a fuel tank, an adsorbent canister, a separator capable of separating fuel vapor from air, and a negative pressure supplier applying negative pressure to the adsorbent canister in order to remove the fuel vapor from the adsorbent canister. The separator has a housing and a separation membrane. The separation membrane divides an inner space of the housing into a receiving chamber and a permeation chamber and is configured to allow the fuel vapor to pass therethrough. The separator is connected with the fuel tank such that the fuel tank is fluidly connected with the receiving chamber. The negative pressure supplier is fluidly connected with the adsorbent canister via the permeation chamber. When the negative pressure supplier applies negative pressure to the adsorbent canister, purge gas flows from the adsorbent canister into the fuel tank via the permeation chamber.
Abstract:
An apparatus for checking leakage from a fuel vapor processing apparatus includes an interrupting device capable of interrupting communication between a canister and a fuel tank when a pressure within the canister is negative and a pressure within the fuel tank is positive. A first pressure detecting device can detect the pressure within the canister or its equivalent. A second pressure detecting device can detect the pressure within the fuel tank or its equivalent.