Abstract:
A nuclear tool includes a tool housing; a neutron generator disposed in the tool housing; and a solid-state neutron monitor disposed proximate the neutron generator for monitoring the output of the neutron generator. A method for constructing a nuclear tool includes disposing a neutron generator in a tool housing; and disposing a solid-state neutron monitor proximate the neutron generator for monitoring the output of the neutron generator. A method for logging a formation includes disposing a nuclear tool in a wellbore penetrating the formation, wherein the nuclear tool comprises a neutron generator and a solid-state neutron monitor disposed proximate the neutron generator; generating neutrons from the neutron generator; monitoring neutrons generated by the neutron generator using the solid-state neutron monitor; detecting signals generated from the neutrons traveling in the formation; and correcting the detected signals, based on signal strength detected by the solid-state neutron monitor, to produce corrected signals.
Abstract:
The invention relates to methods and apparatus for determining a downhole parameter in an underbalanced drilling environment which include: selectively activating a first fluid flowing from the formation through a wellbore while under balanced drilled; detecting the activated first fluid; and determining a depth at which said fluid enters the wellbore.
Abstract:
Apparatus and method for detecting subsurface radiation phenomena. An elongated support member, adapted for disposal within a wellbore traversing a subsurface formation, includes a recess along its longitudinal axis. A pad is linked to the support member. The pad is configured with a surface correspondingly shaped to fit in juxtaposition with the support member recess. The pad is adapted for movement into and out of the recess such that an exposed surface of the pad can extend away from the support member. The pad also includes one or more radiation detectors and is adapted with shielding material on its sides near the exposed surface to prevent radiation reflected from the recess from reaching the detector(s) from the area near the exposed surface.
Abstract:
It is described a logging tool 20 for underground formations surrounding a borehole 14, comprising an elongated body 21 along a major axis; a collar 22 disposed peripherally around said body 21 having a collar wall defined by an inner and an outer surface; a radiation emitting source 201 arranged to illuminate the earth formation 16 surrounding the borehole; at least one radiation detector 211 arranged to detect radiation reflected by the earth formation resulting from illumination by the source 201; at least one source collimation—window 202 and one detector collimation window 212 through which the earth formation is illuminated and radiation is detected; and characterized in that it further comprises at least one radiation shield 30 located between said inner collar surface and the outer surface of the tool, said radiation shield positioned so as to eliminate parasitic radiation that has not traversed the outer collar.
Abstract:
A radiation detector operating at high temperatures is shown comprising a scintillating material for producing light when excited by incident radiation, a photocathode, and an electron multiplier. The photocathode is deposited directly onto the surface of the scintillating material that is oriented toward the electron multiplier. Depositing the photocathode directly on the surface greatly decreases photon loss which is a problem of prior art systems. In a preferred embodiment, a metal flange is hermetically sealed to the scintillating material and this is fusion welded to the electron multiplier to create a vacuum envelope. This invention is particularly useful in noisy environments such as downhole in a drilling operatio
Abstract:
An apparatus for measuring characteristics of earth formations surrounding a borehole, comprises a resistivity measurement device having a multiplicity of antennae spaced between each other in a longitudinal direction of the apparatus. A neutron measurement device of the apparatus comprises at least a neutron source and at least a neutron detector, each of the neutron detectors being at a distance from the neutron source in the longitudinal direction of the apparatus. The multiplicity of antennae are interleaved with the neutron measurement device in order to reduce a total length of the apparatus and in order to allow a determined area of the earth formation to be measured simultaneously using the neutron measurement device and the resistivity measurement device.
Abstract:
A cooling system for a downhole tool includes an insulating chamber disposed in the tool, wherein the chamber is adapted to house an object to be cooled; a Stirling cooler is disposed in the tool, the cooler has a cold end configured to remove heat from the chamber and a hot end configured to dissipate heat; and an energy source to power the Stirling cooler. A downhole tool includes: a tool body, and a cooling system with an insulating chamber; wherein the chamber is adapted to house an object to be cooled; a Stirling cooler is disposed in the tool, the cooler has a cold end configured to remove heat from the chamber and a hot end configured to dissipate heat; and an energy source to power the Stirling cooler.
Abstract:
An advanced method for determining formation density in an array-detector density tool uses three or more detectors to yield an improved accuracy and precision of the formation density measurement even in the presence of a large standoff between the tool and the formation. A more accurate photoelectric factor is determined through a new single detector algorithm. Use of the information on the photoelectric effect and the density from the three detectors allows the measurement of a photoelectric effect compensated for stand off and the photoelectric factor of the mudcake. The use of the multi-detector density answers allows for a consistency check and therefore a much improved quality control of the density measurement.
Abstract:
A method and an apparatus for decomposing a gamma spectrum representative of an unknown material for determining the contribution of each constituent postulated to constitute the material, wherein an energy spectrum of the gamma rays issued from the material is formed, as well as a composite spectrum made up of individual standard spectra of the postulated constituents and comprising elemental yields being representative of the proportion of the corresponding constituents; the best fit between the measured spectrum and the composite spectrum is determined by modifying simultaneously at least one elemental yield and at least one parameter representative of the conditions under which the measured spectrum and the composite spectrum have been obtained. The best fit may be based on any non linear least squares search for a global minimum of X.sup.2 =(S Y-U).sup.T W(S Y-U), where "U" is a matrix representing the measured spectrum, "S" is a matrix representing the composite spectrum, "Y" is a matrix representative of the elemental yields and "W" is a weight matrix. The non linear fitting method used may be e.g. a gradient search or the Marquardt method.
Abstract:
A apparatus and an apparatus for determining the respective contributions in spectroscopy measurements of the borehole and the earth formations surrounding the borehole, derived from the detection of gamma rays resulting from the collisions of neutrons with atoms of the formation or the borehole. From gamma rays from a near and far detector, and established, at each depth, responses (e.g. elemental yields) representative of the values of an unknown in the borehole and in the formation. The far detector response is plotted against the near detector response. From the plot and from known conditions of the detection, is derived a closed curve characteristic of the relative contributions of the borehole and the formation in the responses. For each depth, the respective values of the unknown are derived from the position on the plot of the couple of responses for that depth, with respect to the closed curve. For instance, on a plot of C/(C+O) yields, the curve is a parallelogram two concurrent sides of which form a coordinate system; the coordinates of each response corresponds to the values of the unknown respectively for the formation and the borehole.