Audio output of a document from mobile device
    51.
    发明授权
    Audio output of a document from mobile device 有权
    来自移动设备的文档的音频输出

    公开(公告)号:US08121842B2

    公开(公告)日:2012-02-21

    申请号:US12333325

    申请日:2008-12-12

    IPC分类号: G10L13/08

    摘要: Architecture for playing a document converted into an audio format to a user of an audio-output capable device. The user can interact with the device to control play of the audio document such as pause, rewind, forward, etc. In more robust implementation, the audio-output capable device is a mobile device (e.g., cell phone) having a microphone for processing voice input. Voice commands can then be input to control play (“reading”) of the document audio file to pause, rewind, read paragraph, read next chapter, fast forward, etc. A communications server (e.g., email, attachments to email, etc.) transcodes text-based document content into an audio format by leveraging a text-to-speech (TTS) engine. The transcoded audio files are then transferred to mobile devices through viable transmission channels. Users can then play the audio-formatted document while freeing hand and eye usage for other tasks.

    摘要翻译: 将音频格式转换成音频输出功能的设备的用户播放文档的架构。 用户可以与设备进行交互以控制音频文档的播放,例如暂停,倒带,转发等。在更稳健的实现中,具有音频输出功能的设备是具有用于处理的麦克风的移动设备(例如,蜂窝电话) 语音输入 然后可以输入语音命令来控制文档音频文件的播放(“读取”)以暂停,倒退,读取段落,阅读下一章节,快进等。通信服务器(例如,电子邮件,电子邮件附件等) )通过利用文本到语音(TTS)引擎将基于文本的文档内容转码为音频格式。 经转码的音频文件然后通过可行的传输通道传输到移动设备。 然后,用户可以播放音频格式的文档,同时释放手和眼睛的其他任务。

    Storing state for physical modular toys
    52.
    发明授权
    Storing state for physical modular toys 有权
    存储物理模块化玩具的状态

    公开(公告)号:US09526979B2

    公开(公告)日:2016-12-27

    申请号:US14204929

    申请日:2014-03-11

    IPC分类号: A63F9/24 A63F13/00

    CPC分类号: A63F13/00

    摘要: A modular assembly system is described in which each module comprises a storage element which stores an identifier for the module and data relating to the module. At least some of the module data is variable and is updated based on user interaction with an interactive software experience (e.g. state data). Each module also comprises one or more connectors for connecting to other modules to form a coherent physical whole object. In an embodiment, the system further comprises the interactive software experience which provides user objectives which can only be satisfied by the user interacting with the object or with modules that form the object. At least one of the modules in the object comprises a communication module which passes identifiers and module data to the interactive software experience and receives updated module data from the interactive software experience for storing in one of the modules in the object.

    摘要翻译: 描述了模块化组装系统,其中每个模块包括存储模块的标识符和与模块有关的数据的存储元件。 至少一些模块数据是可变的,并且基于与交互式软件体验(例如状态数据)的用户交互来更新。 每个模块还包括一个或多个连接器,用于连接到其它模块以形成相干物理整体。 在一个实施例中,系统还包括提供用户目标的交互式软件体验,用户目标只能由用户与对象或形成对象的模块进行交互才能满足。 对象中的至少一个模块包括通信模块,该通信模块将标识符和模块数据传递给交互式软件体验,并从交互式软件体验接收更新的模块数据,以存储在对象中的模块之一中。

    Semi-supervised random decision forests for machine learning using mahalanobis distance to identify geodesic paths
    53.
    发明授权
    Semi-supervised random decision forests for machine learning using mahalanobis distance to identify geodesic paths 有权
    使用马哈拉诺比斯距离的机器学习的半监督随机决策树来识别测地线

    公开(公告)号:US09519868B2

    公开(公告)日:2016-12-13

    申请号:US13528876

    申请日:2012-06-21

    IPC分类号: G06N99/00 G06N7/00 G06N5/02

    CPC分类号: G06N99/005 G06N5/02 G06N7/005

    摘要: Semi-supervised random decision forests for machine learning are described, for example, for interactive image segmentation, medical image analysis, and many other applications. In examples, a random decision forest comprising a plurality of hierarchical data structures is trained using both unlabeled and labeled observations. In examples, a training objective is used which seeks to cluster the observations based on the labels and similarity of the observations. In an example, a transducer assigns labels to the unlabeled observations on the basis of the clusters and certainty information. In an example, an inducer forms a generic clustering function by counting examples of class labels at leaves of the trees in the forest. In an example, an active learning module identifies regions in a feature space from which the observations are drawn using the clusters and certainty information; new observations from the identified regions are used to train the random decision forest.

    摘要翻译: 描述了用于机器学习的半监督随机决策树,例如用于交互式图像分割,医学图像分析和许多其他应用。 在示例中,使用未标记和标记的观察来训练包括多个分级数据结构的随机决策林。 在实例中,使用了一个训练目标,其目的是根据观察结果的标签和相似性对观测进行聚类。 在一个示例中,传感器基于集群和确定性信息将标签分配给未标记的观察。 在一个例子中,诱导者通过计算森林中树的树叶上的类标签的示例来形成通用聚类函数。 在一个示例中,主动学习模块识别特征空间中的区域,使用聚类和确定性信息从中绘制观察值; 来自确定地区的新观察用于训练随机决策林。

    Offering network performance guarantees in multi-tenant datacenters
    54.
    发明授权
    Offering network performance guarantees in multi-tenant datacenters 有权
    在多租户数据中心提供网络性能保证

    公开(公告)号:US09519500B2

    公开(公告)日:2016-12-13

    申请号:US14177202

    申请日:2014-02-10

    摘要: Methods of offering network performance guarantees in multi-tenant datacenters are described. In an embodiment, a request for resources received at a datacenter from a tenant comprises a number of virtual machines and a performance requirement, such as a bandwidth requirement, specified by the tenant. A network manager within the datacenter maps the request onto the datacenter topology and allocates virtual machines within the datacenter based on the available slots for virtual machines within the topology and such that the performance requirement is satisfied. Following allocation, stored residual capacity values for elements within the topology are updated according to the new allocation and this updated stored data is used in mapping subsequent requests onto the datacenter. The allocated virtual machines form part of a virtual network within the datacenter which is allocated in response to the request and two virtual network abstractions are described: virtual clusters and virtual oversubscribed clusters.

    摘要翻译: 描述了在多租户数据中心中提供网络性能保证的方法。 在一个实施例中,对从租户在数据中心接收的资源的请求包括许多虚拟机和诸如由租户指定的带宽需求的性能要求。 数据中心内的网络管理器将请求映射到数据中心拓扑,并根据拓扑中的虚拟机的可用插槽为数据中心内的虚拟机分配,以满足性能要求。 在分配之后,根据新分配更新拓扑内的元素的存储剩余容量值,并且该更新的存储数据用于将后续请求映射到数据中心。 所分配的虚拟机构成数据中心内的虚拟网络的一部分,该虚拟网络是根据请求分配的,并且描述了两个虚拟网络抽象:虚拟集群和虚拟超额订阅集群。

    Blind image deblurring with cascade architecture
    55.
    发明授权
    Blind image deblurring with cascade architecture 有权
    盲目的图像脱落与级联架构

    公开(公告)号:US09430817B2

    公开(公告)日:2016-08-30

    申请号:US14077247

    申请日:2013-11-12

    IPC分类号: G06K9/62 G06T5/00 G06K9/40

    摘要: Blind image deblurring with a cascade architecture is described, for example, where photographs taken on a camera phone are deblurred in a process which revises blur estimates and estimates a blur function as a combined process. In various examples the estimates of the blur function are computed using first trained machine learning predictors arranged in a cascade architecture. In various examples a revised blur estimate is calculated at each level of the cascade using a latest deblurred version of a blurred image. In some examples the revised blur estimates are calculated using second trained machine learning predictors interleaved with the first trained machine learning predictors.

    摘要翻译: 描述了具有级联架构的盲目图像去模糊,例如,在修改模糊估计并且将模糊功能估计为组合处理的过程中,在照相机电话上拍摄的照片被去毛刺的情况下被描述。 在各种示例中,使用以级联架构布置的第一训练机器学习预测器来计算模糊函数的估计。 在各种示例中,使用模糊图像的最新去模糊版本在级联的每个级别处计算修正的模糊估计。 在一些示例中,使用与第一训练机器学习预测器交错的第二训练机器学习预测器来计算修正的模糊估计。

    Database access
    56.
    发明授权
    Database access 有权
    数据库访问

    公开(公告)号:US09418086B2

    公开(公告)日:2016-08-16

    申请号:US13971206

    申请日:2013-08-20

    IPC分类号: G06F17/30 G06N7/00

    摘要: Database access is described, for example, where data in a database is accessed by an inference engine. In various examples, the inference engine executes inference algorithms to access data from the database and carry out inference using the data. In examples the inference algorithms are compiled from a schema of the database which is annotated with expressions of probability distributions over data in the database. In various examples the schema of the database is modified by adding one or more latent columns or latent tables to the schema for storing data to be inferred by the inference engine. In examples the expressions are compositional so, for example, an expression annotating a column of a database table may be used as part of an expression annotating another column of the database.

    摘要翻译: 描述数据库访问,例如,数据库中的数据由推理引擎访问。 在各种示例中,推理引擎执行推理算法以从数据库访问数据并使用该数据进行推理。 在示例中,推理算法是从数据库的模式中编译的,该模式通过数据库中的数据的概率分布表达式进行注释。 在各种示例中,通过将一个或多个潜在列或潜在表添加到模式来存储由推理引擎推断的数据来修改数据库的模式。 在示例中,表达式是组合的,因此,例如,注释数据库表的列的表达式可以用作表达数据库的另一列的表达式的一部分。

    Multi-component model engineering
    57.
    发明授权
    Multi-component model engineering 有权
    多组分模型工程

    公开(公告)号:US08935136B2

    公开(公告)日:2015-01-13

    申请号:US13240999

    申请日:2011-09-22

    IPC分类号: G06G7/48 G06N99/00

    CPC分类号: G06N99/005

    摘要: Multi-component model engineering is described, for example, to model multi-component dynamical systems in which the true underlying processes are incompletely understood such as the Earth's biosphere, whole organisms, biological cells, the immune system, and anthropogenic systems such as agricultural systems, and economic systems. In an embodiment individual component models are linked together and associated with empirical data observed from the system being modeled in a consistent, repeatable manner. For example, a model component, its links with data, its outputs, and its links with other model components, are specified in a format to be passed directly to inference routines which use an inference engine to infer the most likely parameters of the multi-component model given subsets of the empirical data. The inferred parameter values take the form of a probability distribution representing the degree of uncertainty in most likely parameter. An embodiment describes ways of identifying model components for revising.

    摘要翻译: 描述了多组分模型工程,例如,模拟多组分动力学系统,其中真实的基础过程不完全被理解,例如地球的生物圈,整个生物体,生物细胞,免疫系统和诸如农业系统的人为系统 和经济体制。 在一个实施例中,各个组件模型被链接在一起,并且与从正在以一致的,可重复的方式建模的系统观察到的经验数据相关联。 例如,模型组件,其与数据的链接,其输出及其与其他模型组件的链接以直接传递给推理例程的格式来指定,推断例程使用推理机推断出多模式组件中最可能的参数, 给出了经验数据子集的组件模型。 推断的参数值采用概率分布的形式表示最可能参数的不确定度。 一个实施例描述了识别用于修改的模型组件的方式。

    Privacy-preserving metering with low overhead
    59.
    发明授权
    Privacy-preserving metering with low overhead 有权
    隐私保护计量,开销低

    公开(公告)号:US08667292B2

    公开(公告)日:2014-03-04

    申请号:US13111695

    申请日:2011-05-19

    IPC分类号: H04L29/06

    摘要: Privacy-preserving metering with low overhead is described. In an embodiment consumption of a resource such as electricity, car insurance, cloud computing resources is monitored by a meter and bills are created in a manner which preserves privacy of a customer but at the same reduces bandwidth use between a meter and a provider of the resource. For example, fine grained meter readings which describe customer behavior are kept confidential without needing to send large cryptographic commitments to meter readings from a meter to a provider. In an example, meter readings are encrypted and sent from a meter to a provider who is unable to decrypt the readings. In examples a cryptographic signature is generated to commitments to the meter readings and only the signature is sent to a provider thus reducing bandwidth. For example, a customer device is able to regenerate the commitments using the signature.

    摘要翻译: 描述了具有低开销的隐私保存计量。 在一个实施例中,诸如电力,汽车保险,云计算资源的资源的消费由电表监控,并且以保持客户的隐私的方式创建账单,但是同样减少了电表和供应商之间的带宽使用 资源。 例如,描述客户行为的细粒度仪表读数保密,无需发送大型加密承诺,以便从仪表到供应商的仪表读数。 在一个例子中,仪表读数被加密并从仪表发送到无法解密读数的提供者。 在示例中,产生了对仪表读数的承诺的加密签名,并且仅将签名发送到提供商,从而减少带宽。 例如,客户设备能够使用签名重新生成承诺。

    Foreground and background image segmentation
    60.
    发明授权
    Foreground and background image segmentation 有权
    前景和背景图像分割

    公开(公告)号:US08625897B2

    公开(公告)日:2014-01-07

    申请号:US12790026

    申请日:2010-05-28

    IPC分类号: G06K9/34

    摘要: Foreground and background image segmentation is described. In an example, a seed region is selected in a foreground portion of an image, and a geodesic distance is calculated from each image element to the seed region. A subset of the image elements having a geodesic distance less than a threshold is determined, and this subset of image elements are labeled as foreground. In another example, an image element from an image showing at least a user, a foreground object in proximity to the user, and a background is applied to trained decision trees to obtain probabilities of the image element representing one of these items, and a corresponding classification assigned to the image element. This is repeated for each image element. Image elements classified as belonging to the user are labeled as foreground, and image elements classified as foreground objects or background are labeled as background.

    摘要翻译: 描述了前景和背景图像分割。 在一个示例中,在图像的前景部分中选择种子区域,并且从每个图像元素计算到种子区域的测地距离。 确定具有小于阈值的测地距离的图像元素的子集,并且该图像元素的子集被标记为前景。 在另一示例中,将来自显示至少用户的图像,邻近用户的前景对象和背景的图像元素应用于经过训练的决策树,以获得表示这些项目之一的图像元素的概率,以及相应的 分类到图像元素的分类。 对于每个图像元素重复这一点。 分类为属于用户的图像元素被标记为前景,并且被分类为前景对象或背景的图像元素被标记为背景。