Abstract:
The invention relates to a method for designing a composite material part with a curved surface (65) to which a plurality of stiffening elements will be joined, in which the design of a 3D fabric model comprises the following steps: generating a planar surface (63) developed in 2D of the surface (65) of the curved part in 3D as well as the same geometric references (71) in 2D as the references (51) of the surface in 3D; associating the surface (63) developed in 2D and the surface (65) in 3D as well as their geometric references (71, 51), such that any action in one of them is reflected in the other; initially computing the fabric model in the surface (63) developed in 2D; carrying out any subsequent modification of the fabric model either in the surface (63) developed in 2D or in the surface (65) in 3D.
Abstract:
A device provides electrical continuity between aeronautical components including a first fixed component and a second component displaceable with respect to the first component. The first and second components include electrically conducting surfaces. A first conductive piece is fixed to the first component and a second conductive piece is fixed to the second component. The first and second pieces are joined together with the possibility of sliding one on the other, in such a way that the first piece is connected to the conductive surface of the first component and the second piece is connected to the conductive surface of the second component, so that, when displacements take place of the second component with respect to the first component, the first piece slides on the second piece maintaining the electrical conductivity between the first and second components.
Abstract:
Aircraft fuselage section (32) subjected to impacts of external bodies, the aircraft fuselage having a curved shape with at least a vertical symmetry plane (A-A) and a central longitudinal axis and comprising a skin (35) and a plurality of frames (37) arranged perpendicularly to said longitudinal axis (33), the aircraft fuselage section also comprising at least an inner reticular structure (51, 53) mounted on a supporting structure (41, 43) comprising longitudinal beams (39) attached to the skin (35) and interconnected with said frames (37), said inner reticular structure (51, 53) being arranged for creating at least one closed cell (75) with the skin (35) for improving its resistance and its damage tolerance to said impacts. Said inner reticular structure (51, 53) can be formed by panels (61), rods (65, 65′), cables (67, 67′) or belts (69, 69′).
Abstract:
A tail-cone of an aircraft includes a skin provided with a movable fairing which, by a swing articulated mechanism, is supported on the skin in order to allow the opening/closing of the movable fairing and gain access to the inside of the tail-cone. The tail-cone includes actuators for operating the swing articulated mechanism in order to permit the automatic opening and closing of the movable fairing to be carried out.
Abstract:
The invention discloses a method for prevention of porosity in composite material parts (1), which is applied when the curing stage of the part (1) is being carried out on a female tool (2). In the curing stage, an adhesive (4) is placed on at least one of the areas of the radii (5) of the composite material part (1), so that the possible subsequent appearance of porosity in said areas of the composite material part (1) is prevented. Thus, the adhesive (4) acquires the fluidization temperature before the resin of the composite material and it is displaced filling the holes generated during the placement of the part (1) on the female tool (2), in the area of the radii (5) of the part (1), during the coupling between the part (1) and the female tool (2).
Abstract:
A bolted joint for connecting a cover of an opening in a primary structure of a lifting surface of an aircraft to the primary structure. The bolted joint includes two first bolted joints on either side of a symmetry axis of the cover arranged without any lateral clearance, two second bolted joints on either side of the symmetry axis on the side of the cover opposite to that of the two first bolted joints, arranged without any lateral clearance in the holes of the primary structure and with a linear lateral clearance in the holes of the cover; a plurality of third bolted joints along the border of the cover arranged without any lateral clearance in the holes of the primary structure and with a radial clearance in the holes of the cover.
Abstract:
A ball-joint support for thin parts, through which a ball-joint is operably coupled to a thin part, and where the ball-joint includes an inner part with a central coaxial orifice through which a longitudinal axis is introduced, and an outer part that engages complementarily to the inner part is provided. The ball joint support includes a cap including a central through hole in which the ball joint is embedded inside via the outer part, and externally, the cap is embedded in a cylindrical opening included in the thin part, and mechanical means for axial retention of the thin part to the cap, wherein the thickness of the cap is greater than the thickness of the thin part where the cap engages.
Abstract:
Optimization of structures subjected to hot gas streams. The invention refers to a fairing (10) for aircraft horizontal stabilizer (3) comprising a front part (11) and a rear part (12), the front part (11) covering a limited extent of the fairing (10) surface, which is the part of the fairing (10) receiving hot air stream (6) coming from the aircraft engines (4), this front part (11) being made of an anti-erosion material, the rear part (12) covering the rest of the surface of the fairing (10), this rear part (12) being made of a material resisting the aerodynamic loads existing on the fairing (10). The invention also refers to an aircraft comprising a horizontal stabilizer (3) with a fairing (10) such as the one described.
Abstract:
A head of a riveting device—for Hi-Lite type rivets—of at least two components of a structure for installing automatically collars on pins previously inserted in the structure. The head comprises: a collar installation tool; a collar supply to supply collars to the collar installation tool; a tool actuating device; a linear displacement device to linearly move the tool during the threading operation; a withdrawal device arranged to withdraw the second part of the collars; a control arrangement configured to automatically perform the installation of collars on pins and after this the withdrawal of the second part of the collars, using tools and collars appropriate for the pins. Also a robot having as end-effector the head and to a method of riveting two components of an aircraft fuselage are provided.
Abstract:
Methods and systems for optimizing the design of aerodynamic surfaces are provided. They include in the design process of an aerodynamic surface of a body which moves through a flow field, the following: preparation of a CFD simulation of said body; resolution of the CFD calculation for specific conditions of the flow field and for obtaining flow lines of the flow on said surface; calculation of at least one geometrical variable of the surface, such as, for example, the normal curvature, according to the direction of said flow lines; and simultaneous visualization of the surface of said body and of at least one geometric variable. Additionally, at least one variable of the aerodynamic flow, such as, for example, a pressure gradient, may be calculated and visualized.