Abstract:
Disclosed are a mask device and a method for assembling the same. The mask device may include a frame; and a mask plate arranged within the frame. The frame may include a first frame and a second frame which are fixed together one on another. The first frame may be made of a shape memory alloy; while the second frame may be made of a metal material whose thermal expansion coefficient is smaller than a predetermined value. And the mask plate is welded to the first frame.
Abstract:
A packaging method for an OLED device, including: opening at least one through hole in a cover plate in a region between the region for forming glass cement and the region for applying UV glue; regulating the pressure in a cell-assembling chamber to a first pressure, and cell-assembling a back plate with the cover plate placed on a base board in the cell-assembling chamber with the first pressure lower than the atmospheric pressure; regulating the pressure in the cell-assembling chamber to the atmospheric pressure; curing the UV glue; regulating the pressure in the cell-assembling chamber to a second pressure that is lower than the atmospheric pressure and higher than the first pressure and detaching the cover plate from the base board; and sealing the through hole in the cover plate; and sintering the glass cement.
Abstract:
An organic light-emitting diode (OLED) display panel, a manufacturing method thereof and a display device are provided. In the manufacturing method, pixel electrodes, required to be deposited with a material, on a base substrate are charged, and electrodes at an evaporation source are charged to form an electric field; evaporation material corresponding to the material required to be deposited are placed into the evaporation source and ionized, and the ionized evaporation material are deposited on the base substrate under the action of the electric field; deposited material in other pixel units are etched off and removed, so that the evaporation material only on the previously charged pixel electrodes on the base substrate are retained; and patterns of the required material are formed by the processes of deposition and etching in turn. The manufacturing method improves the resolution of finished products and can help to improve the resolution of the OLED.
Abstract:
The embodiments of the present invention provide a liquid crystal display panel and driving method thereof. The liquid crystal display panel may comprise a substrate and a plurality of first electrodes and a plurality of second electrodes disposed on the substrate to generate a driving electrical field, wherein each of the first electrodes is disposed in two pixel units which are adjacent in a first direction, and each of the second electrodes is disposed in two pixel units which are adjacent in the first direction, the first electrodes and the second electrodes are disposed alternately by offsetting one pixel unit in the first direction, and the first direction is a row direction or a column direction.
Abstract:
The disclosure provides an organic light-emitting device, a fabrication method thereof, and a display device. The organic light-emitting device comprises an anode layer, a cathode layer, and an organic function layer disposed between the anode layer and the cathode layer. The organic function layer comprises a light-emitting layer. The light-emitting layer comprises a first sub light-emitting layer and a second sub light-emitting layer disposed adjacent to each other, the first sub light-emitting layer is provided on an anode layer side and the second sub light-emitting layer is provided on a cathode layer side. The first sub light-emitting layer and the second sub light-emitting layer have a substantially same energy band difference, and one of the first sub light-emitting layer and the second sub light-emitting layer is capable of absorbing light emitted by the other of the first sub light-emitting layer and the second sub light-emitting layer to achieve stimulated emission.
Abstract:
An array substrate, a touch screen panel and a display device are provided. The array substrate includes a plurality of gate lines, a plurality of data lines, a plurality of touch sensing units, and each touch sensing unit comprises a touch scanning line, a touch sensing line, a first transistor and a sensing electrode, the touch scanning line is connected with a gate electrode and a drain electrode of the first transistor and the sensing electrode is connected with a source electrode of the first transistor; the touch sensing line and the sensing electrode are provided in different layers, spaced apart by an insulating layer and have an overlapping region. This array substrate decreases areas of non-display regions on the array substrate, increases aperture ratio of the touch screen panel and in turn enhances brightness of the display device.
Abstract:
The present invention discloses a pixel structure and a manufacturing method thereof, a light-emitting device, an array substrate and a display device. The pixel structure comprises a plurality of pixel units sequentially arranged, each pixel unit comprising a plurality of color sub-pixel units, wherein the color sub-pixel unit of a certain color to which human eyes have poor discriminating power is positioned in a central position of the pixel unit, and the color sub-pixel units of the remaining colors are positioned around the color sub-pixel unit of the certain color, and an area of the color sub-pixel unit of the certain color is larger than that of any one of the color sub-pixel units of the remaining colors.
Abstract:
An embodiment of the present disclosure provides a mask plate and a manufacturing method thereof. The present disclosure belongs to the field of organic electroluminescence device manufacturing, and aims to improve a quality of a pattern generated during an evaporation process. The mask plate includes a pattern region and an auxiliary region positioned at an outer periphery of the pattern region. At least a part of the auxiliary region has a thickness larger than a thickness of the pattern region. The embodiment of the present disclosure can be applied to a manufacturing of an organic electroluminescence device.
Abstract:
Embodiments of the present invention provide an array substrate and a manufacturing method thereof and a touch display device. The array substrate comprises multiple data lines, multiple gate lines and multiple thin film transistors. The data lines and the gate lines intersect with each other in different planes to divide the array substrate into multiple pixel units, in each of which a thin film transistor is provided, wherein the array substrate further comprises multiple first touch sensing electrodes and multiple second touch sensing electrodes. The first touch sensing electrodes are provided below active regions of the thin film transistors and also serve as metal shielding layers for blocking light emitted by a backlight source. The first touch sensing electrodes and the second touch sensing electrodes intersect with each other in different planes, and capacitances are formed at intersections of the first touch sensing electrodes and the second touch sensing electrodes.
Abstract:
A method, an apparatus and a system for display compensation relate to the field of display technique. The method for display compensation includes: measuring luminance of each of pixels in a full-color test picture outputted from a display apparatus in a uncompensated status when the display apparatus outputs the full-color test picture; obtaining a reference luminance value according to the measured luminance values of the respective pixels; obtaining compensation coefficients for the respective pixels according to the reference luminance value and the luminance values of the respective pixels; performing a compensation and correction on signals inputted to the respective pixels respectively according to the compensation coefficients. By utilizing the method, the issue of the non-uniformity of the display effect in the display apparatus can be addressed effectively.