Abstract:
Systems and methods are disclosed for minimizing latency between receipt of a NACK at a base station from a user equipment (UE) and retransmission of data to the UE. Time constraints for processing the ACK/NACK are relaxed so the base station can decode the ACK/NACK to determine whether a NACK has been received and then prepare for transmission of the appropriate data to the UE in the immediately following transmission time interval (TTI). These constraints are relaxed by separating download data indicator (DDI) from the PDCCH control data and delaying transmission of the DDI until decoding of the ACK/NACK.
Abstract:
Methods and apparatuses for wireless communication are provided. A transmitting apparatus receives an indication to use multiple subframes to send uplink control information, codes the uplink control information over the multiple subframes based on the indication, and sends the coded uplink control information via the multiple subframes. Sending the coded uplink control information includes transmitting acknowledgement information (ACK) of a current downlink-centric self-contained subframe in an uplink acknowledgement portion of the current downlink-centric self-contained subframe, bundling ACK bits of multiple downlink-centric self-contained subframes and encoding the bundled ACK bits to generate parity acknowledgement bits associated with systematic acknowledgement bits, transmitting the systematic acknowledgement bits in each uplink acknowledgement portion of the multiple downlink-centric self-contained subframes, and transmitting the parity acknowledgement bits associated with the acknowledgement information bits of the multiple downlink-centric self-contained subframes in an uplink-centric self-contained subframe that is sequentially subsequent to the multiple downlink-centric self-contained subframes.
Abstract:
Various aspects of the present disclosure provide for methods, apparatus, and computer software for multiple access to a channel carrying a common uplink burst transmitted by users that utilize two different modes. Specifically, a coupled mode provides for range extension for users at a cell edge, while a decoupled mode provides for user data transmissions within the common uplink burst. Multiple access between these different modes may be provided in a non-orthogonal scheme by moderating the amount of interference between the respective modes. Further, multiple access between these different modes may be provided in an orthogonal scheme by utilizing interleaved frequency division multiple access (IFDMA).
Abstract:
Techniques are described for wireless communication. One method includes identifying a transmission time interval (TTI)-level control region, where the cascaded control region includes a TTI-level common control region and a TTI-level UE-specific control region, and where the TTI-level common control region has a pointer to a location of the TTI-level UE-specific control region; and demodulating at least one of the TTI-level common control region and the TTI-level UE-specific control region. Some techniques enable control information in a first region to point to a second region that includes additional control information. Some techniques enable two-stages of control. Semi-persistent scheduling/prescheduling control may be configured to cause an entity to refrain from demodulating one of the stages of control.
Abstract:
Aspects of the present disclosure provide a configurable bi-directional time division duplex (TDD) subframe structure. The configurable subframe structure includes a downlink control portion, an uplink control portion, an uplink data portion and a downlink data portion. A current subframe for communication between a scheduling entity and a set of one or more subordinate entities is produced by determining a desired ratio of uplink information to downlink information for the current subframe and configuring the configurable subframe structure with the desired ratio.
Abstract:
Systems and methods are disclosed for enhancing the power efficiency of low power internet of everything (JOE) devices or user equipments (UEs). A UE or IOE having a low power companion receiver maintains its full power receiver in a sleep state until it receives a wake up indicator from a base station. In response to the wake up signal, the UE or IOE powers up its full power receiver and receives data from the base station. The base station further schedules the wake up signals so as not to collide with control signals expected by UEs or IOEs without low power receivers, or those UEs and IOEs are configured to detect and react to the wake up signals.
Abstract:
Adaptive signaling (e.g., pilot signaling, control signaling, or data signaling) is disclosed in which resources allocated to one or more symbols are allowed to vary to more closely match channel conditions and data latency requirements. In one embodiment, a method includes determining that low-latency data is available to transmit during a first transmission time interval (TTI) and informing a mobile station that the low-latency data will be transmitted during one slot reserved for a symbol in the first TTI. The low-latency data may be transmitted during the first time slot in the first TTI and the symbol (originally scheduled symbols) may be transmitted during a second time slot.
Abstract:
The disclosure relates in some aspects to techniques for use in systems where a plurality of devices with different priority levels share a common set of resources for communication (e.g., downlink transmissions). Certain aspects provide a new indication channel and a procedure to signal scheduling information (e.g., priority information). Such information may serve as an indicator for possible new grants. Such information may additionally serve as an indicator for higher-priority scheduling conflicts or include explicit commands that result from conflicts (e.g., conflicts relating to puncturing of resources allocated for transmissions to lower priority devices).
Abstract:
Aspects of the present disclosure provide a self-contained subframe structure for time division duplex (TDD) carriers. Information transmitted on a TDD carrier may be grouped into subframes, and each subframe can provide communications in both directions (e.g., uplink and downlink) to enable such communications without needing further information in another subframe. In one aspect of the disclosure, a single subframe may include scheduling information, data transmission corresponding to the scheduling information, and acknowledgment packets corresponding to the data transmission. Furthermore, the subframe may additionally include a header and/or a trailer to provide certain bi-directional communications functions.
Abstract:
Various aspects of the present disclosure provide for enabling at least one opportunity to transmit mission critical (MiCr) data and at least one opportunity to receive MiCr data in a time division duplex (TDD) subframe during a single transmission time interval (TTI). The single TTI may be no greater than 500 microseconds. The TDD subframe may be a downlink (DL)-centric TDD subframe or an uplink (UL)-centric TDD subframe. How much of the TDD subframe is configured for the at least one opportunity to transmit the MiCr data and how much of the TDD subframe is configured for the at least one opportunity to receive the MiCr data may be adjusted based on one or more characteristics of the MiCr data. The MiCr data may have a low latency requirement, a high priority requirement, and/or a high reliability requirement. Various other aspects are provided throughout the present disclosure.