Abstract:
Techniques are described for wireless communication. A first method includes monitoring, by a first wireless device, at least one predetermined symbol period of a subframe for an indication that a second wireless device has obtained access to a shared radio frequency spectrum; determining a starting symbol for a transmission by the second wireless device over the shared radio frequency spectrum based on detecting the indication; and receiving the transmission by the second wireless device over the shared radio frequency spectrum based on the determined starting symbol.
Abstract:
A method for wireless communication may include a mobile entity receiving a timing indicator for a discontinuous reception (DRX) cycle during a DRX mode, and adjusting at least an acknowledgement timing in response to receiving the timing indicator for the DRX cycle. A base station in communication with the mobile entity may provide a timing indicator for a DRX cycle during a DRX mode to the mobile entity, transmit at least one of downlink (DL) data or an uplink (UL) grant indicator to the mobile entity at a first time, and waiting from the first time for a time period indicated by the timing indicator before receiving at least one of an acknowledgement of the DL data or UL data responsive to the UL grant from the mobile entity.
Abstract:
Methods, systems, and devices are described for supporting common reference signaling in wireless communications systems. Some configurations introduce a phase discontinuity between common reference signal (CRS) transmissions on different subframes. This may address issues that may arise when a reduced CRS periodicity is utilized. Indicators may also be transmitted from base stations to user equipment (UEs) to indicate whether phase continuity may be assumed or not. Some configurations may support CRS sequence initialization. These tools and techniques may utilize an extended CRS sequence periodicity, which may increase the number of CRS sequences transmitted by a cell.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may establish a connection with another wireless node, such as a base station or another UE. The connection may include a narrowband control region of a wideband system. The UE may identify a set of resources, which may include a set of subframes that have the same precoding or a set of resource blocks that have the same precoding, during which to monitor a demodulation reference signal (DM-RS) for decoding a control channel within the narrowband. The UE may then decode the control channel using the DM-RS or a cell-specific reference signal (CRS), or both DM-RS and CRS. The UE may exclude resources of the narrowband region that include a control region for broadband communications.
Abstract:
An enhanced data transmission operation is disclosed in which PDSCH and/or EPDCCH may be transmitted in the first symbol either with or without legacy control information multiplexed with the data transmissions. Base stations operating according to the various aspects may transmit indicators to related mobile devices that identify when such PDSCH/EPDCCH are transmitted in the first symbol period. UEs receive the multiplexed data transmissions and decode the appropriate PDSCH/EPDCCH transmissions along with any multiplexed legacy control information.
Abstract:
Techniques are described for wireless communication. A first method includes receiving from a base station an indication of a set of one or more uplink interlaces of an unlicensed radio frequency spectrum band allocated for a sounding reference signal, and transmitting the sounding reference signal for a user equipment (UE) over the indicated set of one or more uplink interlaces of the unlicensed radio frequency spectrum band. A second method includes receiving an indication of an interlace of an unlicensed radio frequency spectrum band allocated for a physical uplink control channel (PUCCH) transmission, and transmitting a scheduling request and a buffer status report over the indicated interlace.
Abstract:
Certain aspects of the present disclosure propose methods for supporting uplink transmit diversity in a wireless communication system. The proposed methods may eliminate ambiguity in decoding physical downlink control channel aggregation level and resources that are used by different antennas of a user equipment. In addition, a method is proposed for resource allocation for ACK/NACK repetition.
Abstract:
A method of wireless communication provides narrow bandwidth operation within a wider LTE system bandwidth. Wideband information is transmitted to a first set of user equipments (UEs). Also, narrowband information is transmitted to a second set of UEs. The second set of UEs operate in a narrower bandwidth than the first set of UEs.
Abstract:
Methods, systems, and devices are described for providing allocations and signaling for different types of communications within a wireless communication system. An eNB and/or a UE may be configured to operate within the wireless communication system using two or more different types of communications. The different types of communications may differ, for example, based on round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, a transmission time interval (TTI) for wireless transmissions, and/or duty cycle timing of wireless transmissions. Reserved resources within a system bandwidth may be identified for a first type of communications, and all or a portion of remaining resources within the system bandwidth may be allocated for other communications that may differ from the first type of communications based on, for example, RTT, TTI, and/or duty cycle timing.
Abstract:
Techniques are provided for combining different types of reference signals. A wireless communications network may be configured to allow a user equipment (UE) to combine multiple demodulation reference signals (DM-RSs) to support demodulation of a physical downlink shared channel (PDSCH), and/or other downlink transmissions, transmitted from a base station to the UE. The base station may provide explicit signaling that reference signals transmitted in two or more transmission time intervals may be combined, or a determination that reference signals transmitted in two or more transmission time intervals may be combined may be made implicitly based on system configuration and previous transmissions. Based on the explicit signaling and/or implicit determination, a UE may combine reference signals included in each of two or more reference signals for use in demodulation of downlink transmissions.