摘要:
An optical tomograph obtains a tomogram of an object by dividing a low coherence light beam into a signal light beam and a reference light beam, shifting the frequency of at least one of the signal light beam and the reference light beam so that the signal light beam and the reference light beam becomes different from each other in frequency, causing the signal light beam to impinge upon the object, causing the signal light reflected at a predetermined depth of the object to interfere with the reference light beam, and measuring the intensity of the obtained interference light. A light amplifier amplifies the reflected signal light.
摘要:
A gravity sensor is disclosed which includes a first mass adapted to free fall when selectively released from an initial position. The mass has optical elements adapted to change a length of an optical path in response to movement of the mass. The sensor output is coupled to a beam splitter. One output of the splitter is coupled substantially optically directly to an interferometer. Another output of the splitter is coupled to the interferometer through an optical delay line. A frequency of the interference pattern is directly related to gravity at the mass. A second such mass having similar optics, optically coupled in series to the first mass and adapted to change the path length in opposed sign, when selectively dropped to cause time coincident movement of the two masses, generates an interference pattern having frequency related to gravity difference.
摘要:
A broadband imaging system is disclosed that provides greatly enhanced depth resolution through the use of phase shift interferometry. The system may comprise a transmitter, a splitter, a phase inverter, and a receiver. The transmitter transmits a signal pulse that is split into a measurement pulse and a reference pulse. The measurement pulse is applied to a sample, and a relative phase shift of approximately &pgr; radians is introduced between the measurement pulse and the reference pulse by the phase inverter. The measurement and reference pulses are then recombined to form a combined pulse that is detected by the receiver. The phase inverter may be a simple lens that introduces a Gouy phase shift by passing the measurement or reference pulse through a focal point. In this manner, a background-free measurement is provided, which provides a greatly enhanced sensitivity to small changes in the measurement waveform, regardless of origin.
摘要:
The split-beam optical thickness gauge (OTG) measures the height difference of two adjacent surfaces. Low-coherence light is generated by the low-coherence light source. The split-beam probe head receives the low-coherence light and splits the incoming low-coherence light into a primary beam and walk-off beam. The primary beam shines upon a first surface and is reflected back up into the split-beam probe head. The walk-off beam shines upon a second surface and is reflected back up into the split-beam probe head. Spatial separation between the primary beam and the walk-off beam ensures that each beam shines substantially on only one of the surfaces. An incorporated polarizer assures that the primary and walk-off beams interfere. The reflected light returns to the autocorrelator and is detected so that distance measurements can be determined based upon a change in the path difference between the reflected primary beam and the walk-off beam.
摘要:
In an optical system for an oblique incidence interferometer, first and second prisms are used for luminous flux dividing and for luminous flux combining, respectively. Reference light and measurement light are separated from each other at a surface where collimated coherent light enters or exits from the first prism, whereas the reference light and measurement light are combined together at a surface where the measurement light enters or exits from the second prism.
摘要:
An interference optical system (18) leads parallel beam to a pair of opposed test surface (M1, M2). It then leads, from the test surfaces via different optical paths (C1, C2), interference fringe images formed by radiation of the parallel beam to the test surfaces (M1, M2), respectively. The interference optical system (18) has a pair of opposite reference surfaces (S1, S2) formed thereon and defined with a highly accuracy parallelism and distance. A measurement head (27) is provided with these reference surfaces (S1, S2), which are interposed between and oppose to the test surfaces (M1, M2), respectively. Imaging devices (19a, 20a) take interference fringe images that are created through interference between a light reflected at each of the test surfaces (M1, M2) and a light reflected at the corresponding reference surface (S1, S2) opposing thereto.
摘要:
A system and a method for recording interference fringes in a photosensitive medium. Two light beams are guided along different light paths to impinge on a photosensitive medium, where they interfere to produce the interference fringes. One of the beam is reflected along its path on a delay mirror forming a fixed angle &phgr; with respect to the plane of the photosensitive medium. Both the photosensitive medium and delay mirror are translated with respect to the light paths of the two beams, thereby recording the interference fringes all along the medium. The angle &phgr; is chosen so that the interference pattern is fixed relative to the photosensitive medium along its length.
摘要:
An uncorrelated Michelson interferometer is formed with single mode optical fiber. In a first embodiment, light is transmitted into an optical 3 dB coupler, and split into a transmission down a first optical fiber and transmission down a second, significantly longer second optical fiber. In the disclosed embodiment, the second optical fiber path may be several meters, and even hundreds of meters longer than that of the first fiber optic path. The light at the ends of the respective first and second fiber optic paths is reflected back into the single mode optical fiber, and coupled in the optical coupler. In the first embodiment, since the second fiber optic is relatively long, an unknown amount of rotation of the polarization would otherwise occur. Thus, a polarization controller is used to control the polarization in the longer, second optical fiber such that a maximum signal is output from the optical coupler. The interference between the reflected and coupled light signals from the two fiber optic paths is uncorrelated if the difference in path lengths 2&Dgr;L (up and back in each fiber optic path) exceeds the optical coherence length of the signal in the single mode optical fiber. In a second embodiment, the need for the polarization controller is eliminated by using polarization maintaining fiber (PMF) in both the first and second fiber optic paths, and using an optical rotator such as a Faraday &pgr;/4 rotator between the ends of the PMF fiber and the respective reflectors. Using PMF optical fiber and Faraday rotators, the return (i.e., reflected) light signal in each of the optical fibers, is orthogonal to the respective input signals. Moreover, the return light signal experiences no polarization mode delay. Thus, the polarizations of the returned (i.e., reflected) light signals in each of the first and second fiber optic paths are matched due to the use of PMF optical fiber.
摘要:
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
摘要:
In a phase interference detecting system with use of an interferometer, a height from a reference surface on a measurement surface is detected by receiving interference components of reflection lights from the reference surface and a measurement surface, which lights are divided from a laser beam and are modulated with a frequency being different therefrom, i.e., by irradiating only one laser beam. A light detector is constructed with a line type sensor for receiving the interference components of the reflection lights, and has a plurality of pixel groups for common use of a measurement surface and a plurality of pixel groups for exclusive use of a reference surface, which are provided at both thereof. A reference surface phase detecting means calculates a reference surface phase signal with respect to the pixels at a measurement point within the pixel group for common use of measurement surface, on a basis of an average value of signals of a predetermined number of pixel groups positioned at both sides in symmetric with respect to said measurement point. A measurement point phase calculating means calculates a measurement point phase signal of said reflection lights being incident upon the pixels at said measurement point on a basis of signals of the pixels at said measurement point. A height calculating means calculates out a signal corresponding to height of said measurement point by subtracting said reference surface phase signal from said measurement point phase signal.