CROSSLINKING OF AROMATIC POLYMERS FOR ANION EXCHANGE MEMBRANES

    公开(公告)号:US20210108067A1

    公开(公告)日:2021-04-15

    申请号:US17050256

    申请日:2019-04-24

    Abstract: An ion exchange membrane material is composed of a crosslinked polymer network including a first poly(styrene-b-ethylene-r-butylene-b-styrene) triblock copolymer (SEBS), and second SEBS, and a linker crosslinking the first SEBS and the second SEBS. At least one phenyl group from the first SEBS and the second SEBS is functionalized with an alkyl group, and the carbon at the benzylic position of these alkyl groups is saturated with at least two additional alkyl groups. The linker is a diamine bound to the alkyl functional groups. The ion exchange membrane material is made via a substantially simultaneous quaternization and crosslinking reaction between the diamine linker and SEBS functionalized with alkyl halide groups. Increasing concentration of crosslinker in produces membranes with reduced water uptake, leading to an expectation of enhanced stability under hydrated conditions and greater durability. Advantageously, this reduction in water uptake came with little change to ion exchange capacity.

    Ion-exchange membrane
    44.
    发明授权

    公开(公告)号:US10974209B2

    公开(公告)日:2021-04-13

    申请号:US16326009

    申请日:2017-08-30

    Abstract: A polymerizable composition for forming an ion-exchange resin precursor, the polymerizable composition containing a monomer component and polyethylene particles in an amount of 50 to 120 parts by mass per 100 parts by mass of the monomer component, wherein the monomer component contains an aromatic monomer for introducing ion-exchange groups and a nitrogen-containing aliphatic monomer, the nitrogen-containing aliphatic monomer being present in an amount of 10 to 35% by mass in said monomer component. An ion-exchange membrane is produced by applying the polymerizable composition onto a polyolefin type filament base material and polymerizing the polymerizable composition to form an ion-exchange resin precursor and, thereafter, introducing ion-exchange groups into the precursor.

    Hollow fiber membrane for use in an anesthetic circuit

    公开(公告)号:US10926214B2

    公开(公告)日:2021-02-23

    申请号:US16094833

    申请日:2017-04-20

    Abstract: Hydrophobic poly(4-methyl-1-pentene) hollow fiber membrane for retention of anesthetic agents with an inner and an outer surface and between inner and outer surface an essentially isotropic support layer with a sponge-like, open-pored, microporous structure free of macrovoids and adjacent to this support layer on the outer surface a dense separation layer with a thickness between 1.0 and 3.5 μm. The membrane has a porosity in the range of greater than 35% to less than 50% by volume and a permeance for CO2 of 20-60 mol/(h·m2·bar), a gas separation factor α(CO2/N2) of at least 5 and a selectivity CO2/anesthetic agents of at least 150. The process for producing this membrane is based on a thermally induced phase separation process in which process a homogeneous solution of a poly(4-methyl-1-pentene) in a solvent system containing components A and B is formed, wherein component A is a strong solvent and component B a weak non-solvent for the polymer component. After formation of a hollow fiber the hollow fiber is cooled in a liquid cooling medium to form a hollow fiber membrane. The concentration of the polymer component in the solution may be in the range from 42.5 to 45.8 wt.-% and the hollow fiber leaving the die runs through a gap between die and cooling medium with a gap length in the range of 5-30 mm.

    Grafted ultra high molecular weight polyethylene microporous membranes

    公开(公告)号:US10792620B2

    公开(公告)日:2020-10-06

    申请号:US15527094

    申请日:2015-11-19

    Applicant: ENTEGRIS, INC.

    Abstract: Grafted, asymmetric, porous, ultra high molecular weight polyethylene membranes having a bubble point between about 5.38 bar (78 psi) and 11.03 bar (160 psi) are disclosed. Monomers are grafted to the porous polymeric membrane surfaces, the monomers having one or more of neutral groups or ion exchange groups grafted to one or more surfaces of the membrane. A combination of two photoinitiators can be used to graft the monomers to the asymmetric, porous, ultra high molecular weight membrane resulting in grafted microporous membranes that have water flow rates that are at least 50% of the water flow rate of an ungrafted, asymmetric, porous ultra high molecular weight polyethylene membrane. The grafted membrane also wets in water.

Patent Agency Ranking