摘要:
The present invention provides methods and apparatuses for controlling a gain of a bidirectionally-pumped Raman fiber amplifier having both forward optical pumps and backward optical pumps. The overall gain is controlled by adjusting the forward optical pumps, while the power levels of the backward optical pumps are essentially fixed. Gain circuitry operates in an opened loop configuration and uses a predetermined function relating a power variation of at least one wavelength region with a pump power adjustment for at least one forward optical pump. Two approximate linear relationships between the input signal power variations and the required pump power adjustments are utilized in controlling the Raman fiber amplifier. Each approximate linear relationship includes at least one linear coefficient that relates a power variation for a specific wavelength region and a power adjustment of a specific Raman pump.
摘要:
The present invention provides methods and apparatuses for controlling a gain of a bidirectionally-pumped Raman fiber amplifier having both forward optical pumps and backward optical pumps. The overall gain is controlled by adjusting the forward optical pumps, while the power levels of the backward optical pumps are essentially fixed. Gain circuitry operates in an opened loop configuration and uses a predetermined function relating a power variation of at least one wavelength region with a pump power adjustment for at least one forward optical pump. Two approximate linear relationships between the input signal power variations and the required pump power adjustments are utilized in controlling the Raman fiber amplifier. Each approximate linear relationship includes at least one linear coefficient that relates a power variation for a specific wavelength region and a power adjustment of a specific Raman pump.
摘要:
An ultraviolet super-continuum source with a fiber-optic may be provided with direct stimulation by a laser having a relatively narrow bandwidth, for example, less than the typical Raman shift in the material of the optical fiber to provide a super-continuum source extending for wavelengths below 400 nanometers.
摘要:
The present invention has an object to provide a Raman amplifier, a WDM optical communication system and a method of controlling the Raman amplification, capable of optimizing amplification characteristics in response to a change of operating conditions of the system so that transmission quality of the WDM signal light can be maintained in good. In order to achieve the above object, in the Raman amplifier according to the present invention, a plurality of pumping light generated by a pumping light generating section capable of varying a wavelength and power of the plurality of pumping light, are multiplexed by a pumping light multiplexing section that has wavelength variable transmission characteristics, and are supplied to an optical transmission path via a pumping light supplying section, and signal light being propagated through the optical transmission path is Raman amplified, wherein the Raman amplifier comprises a pumping light administrating section that controls supply conditions of the pumping light by adjusting operational setting of the pumping light generating section and the wavelength transmission characteristics of the pumping light multiplexing section in synchronization with the change with time of the system operational conditions.
摘要:
Fiber-optic communications systems are provided for optical communications networks. Fiber-optic communications links may be provided that use spans of transmission fiber to carry optical data signals on wavelength-division-multiplexing channels at different wavelengths. Raman pump light may be used to provide Raman amplification for the optical data signals. The Raman pump light may be used to make measurements on the spans of transmission fiber. Raman pump light may be modulated to make optical time domain reflectometry measurements and measurements of the Raman gain coefficient in the fiber. Information on the measurements made using the Raman pump light may be used to control the Raman pump light during operation of the communications link and may be provided to a network management system.
摘要:
In one aspect, the invention relates to optical fibers and systems that include such fibers. In another aspect, the invention provides an optical fiber than includes a core, a cladding surrounding the core, a layer surrounding the cladding, and a region between the layer and the cladding. The region can comprise an index of refraction that is different than an index of refraction comprised by the cladding. In one embodiment, the region can include a void containing air or a liquid. The void can be evacuated. The region can include a solid, such as, for example, a polymer. The layer can contact the cladding. The fiber can comprise rare earth ions.
摘要:
The present invention relates to a Raman amplification method realizing Raman amplification of WDM signal light in a wider amplification wavelength band with a simpler configuration, and the like. A Raman amplifier realizing the Raman amplification method comprises a Raman amplification optical fiber, and a pumping light source for supplying pumping light having a wavelength &lgr;p to the amplification optical fiber. In the Raman amplifier, a part of the signal light is Raman-amplified with the pumping light having the wavelength &lgr;p, whereas a part of the Raman-amplified light is utilized as pumping light. This Raman-amplifies signal light including a channel wavelength with a wavelength of (&lgr;p+&Dgr;&lgr;+20 nm) or longer, where &Dgr;&lgr; is the Raman shift amount of wavelength caused by the pumping light at the wavelength &lgr;p.
摘要:
Optical systems of the present invention include a plurality of optical processing nodes in optical communication via a plurality of signal varying devices. A first signal varying device includes an optical fiber configured to produce Raman scattering/gain in a signal wavelength range and a first signal variation profile. A first pump source is configured provides sufficient pump power in a plurality of first pump wavelengths to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range. A second signal varying device is provided having a second signal variation profile to produce a cumulative signal variation profile that differs from the first and second signal variation profiles.
摘要:
The present invention has an object to provide a Raman amplifier, a WDM optical communication system and a method of controlling the Raman amplification, capable of optimizing amplification characteristics in response to a change of operating conditions of the system so that transmission quality of the WDM signal light can be maintained in good. In order to achieve the above object, in the Raman amplifier according to the present invention, a plurality of pumping light generated by a pumping light generating section capable of varying a wavelength and power of the plurality of pumping light, are multiplexed by a pumping light multiplexing section that has wavelength variable transmission characteristics, and are supplied to an optical transmission path via a pumping light supplying section, and signal light being propagated through the optical transmission path is Raman amplified, wherein the Raman amplifier comprises a pumping light administrating section that controls supply conditions of the pumping light by adjusting operational setting of the pumping light generating section and the wavelength transmission characteristics of the pumping light multiplexing section in synchronization with the change with time of the system operational conditions.
摘要:
Optical systems of the present invention include a plurality of optical processing nodes in optical communication via at least one signal varying device. The signal varying devices includes an optical fiber suitable for facilitating Raman scattering/gain in a signal wavelength range and a pump energy source for providing pump energy in a plurality of pump wavelengths. The pump source provides sufficient pump energy in each pump wavelength to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range. The pump wavelengths are selected such that the combined Raman gain resulting from the pump energy supplied by each pump wavelength produces a desired signal variation profile in the signal wavelength range. In addition, the pump energy supplied by at least one of the pump wavelengths can be varied to produce a controlled signal intensity variation profile over the signal wavelength range in the optical fiber.