Abstract:
A system and method for preventing anode reactant starvation. The system includes a hydrogen source, an anode bleed valve, and a cell voltage monitor. The system also includes an anode sub-system pressure sensor and a controller configured to control the anode sub-system. The controller determines the average cell voltage and estimates the hydrogen molar fraction and/or nitrogen molar fraction in the anode sub-system. The controller also receives measurement data from the cell voltage monitor and the pressure sensor, and determines whether there is a decrease in the minimum cell voltage in response to changes in the anode pressure. If the controller detects a decrease in the minimum cell voltage in response to changes in the anode pressure, the controller corrects for the decrease by increasing anode pressure and/or by decreasing the molar fraction of nitrogen in the anode sub-system.
Abstract:
A fuel cell system includes a fuel cell stack, a fuel inlet conduit, a water inlet conduit, and a hydrometer, such as an alcoholometer. The hydrometer is adapted to provide a measurement of a water-to-fuel ratio of a fuel inlet stream within the fuel inlet conduit. The water inlet conduit is adapted to provide a quantity of water to the fuel inlet conduit in order to achieve a desired water-to-ratio being provided to the fuel cell stack.
Abstract:
Provided are a direct formic acid fuel cell and a method of operation thereof capable of maintaining performance constantly through implementing the real time measurement and control of formic acid concentration.
Abstract:
The present invention is directed to a fuel cell system with various features for optimal operations of an electronic device, a battery charger or a fuel refilling device. The fuel cell system includes an information storage device associated with the fuel supply, pump and/or refilling device. The information storage device can be any electronic storage device including, but not limited to, an EEPROM or a PLA. The information storage device can include encrypted information. The information storage device can include software code for confirming the identification of the cartridge before operation of the electronic device and/or refilling device. The information storage device can include instructions for a hot swap operation to shut down properly when the fuel supply is ejected while the electronic device is in operation. The present invention is also directed to system architecture for a fuel cell system that utilizes information storage devices. The system architecture may have flow regulators, which include a regulating valve.
Abstract:
A multi-stack assembly receiving fuel from a fuel supply and producing power output for consumption by a load, the assembly comprising a plurality of fuel cell stacks for producing DC power and forming a plurality of fuel cell stack groups, wherein each of the stack groups includes at least one fuel cell stack, a plurality of inverters corresponding to the plurality of fuel cell stack groups, wherein each of the inverters draws a predetermined amount of DC power from a corresponding fuel cell stack group and converts the DC power to AC power; and a controller for controlling each of the inverters to draw the predetermined amount of DC power from the corresponding fuel cell stack group so as to satisfy power requirements of the load.
Abstract:
A fuel cell system for use in transportation equipment, for example, can determine an abnormality in its fuel supply device without additional detectors being provided for abnormality detection. The fuel cell system is mounted on a motorbike, and includes a cell stack which includes a plurality of fuel cells, an aqueous solution pump arranged to supply aqueous methanol solution to the cell stack, a controller which includes a CPU, an inflow temperature sensor arranged to detect a temperature of aqueous methanol solution which is introduced to the cell stack, and an outflow temperature sensor arranged to detect a temperature of aqueous methanol solution discharged from the cell stack. The CPU obtains an inflow outflow temperature difference by calculating a difference between a detection result from the inflow temperature sensor and a detection result from the outflow temperature sensor. Then, the CPU compares the inflow outflow temperature difference to a predetermined value, and thereby determines whether or not there is any abnormality in the aqueous solution pump.
Abstract:
The present invention is directed to a fuel cell system with various features for optimal operations of an electronic device, a battery charger or a fuel refilling device. The fuel cell system includes an information storage device associated with the fuel supply, pump and/or refilling device. The information storage device can be any electronic storage device including, but not limited to, an EEPROM or a PLA. The information storage device can include encrypted information. The information storage device can include software code for confirming the identification of the cartridge before operation of the electronic device and/or refilling device. The information storage device can include instructions for a hot swap operation to shut down properly when the fuel supply is ejected while the electronic device is in operation. The present invention is also directed to system architecture for a fuel cell system that utilizes information storage devices. The system architecture may have flow regulators, which include a regulating valve.
Abstract:
A fuel cell stack includes: a first cell having a first fuel gas flow path; and a second cell having a second fuel gas flow path constructed to have a specific flow path structure having a higher potential for a decrease in concentration of a fuel gas than that of the first fuel gas flow path during power generation. A sensor is located on the second cell to detect a decrease in concentration of the fuel gas during power generation. In one exemplified structure, a groove formed on an anode separator of the second cell as the second fuel gas flow path has a restriction element to narrow the sectional area of flow passage. A hydrogen concentration sensor is located in a non-narrowed area in the downstream of the restriction element having a lower pressure level. Impurity gas discharge control discharges an anode off gas out of the fuel cell stack, in response to detection of a decrease in hydrogen concentration to or below a preset reference level by the hydrogen concentration sensor. This arrangement of the invention enables the effective use of the fuel gas and prevents deterioration of membrane electrode assemblies of the fuel cell stack by carbon oxidation in an anode dead end-type fuel cell system.
Abstract:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10, 200). During shut down of the plant (10, 200), hydrogen fuel is permitted to transfer between an anode flow path (24, 24′) and a cathode flow path (38, 38′) while a low-pressure hydrogen generator (202) selectively generates an adequate amount of hydrogen and directs flow of the low-pressure hydrogen into the fuel cell (12′) downstream from a hydrogen inlet valve (52′) to maintain the fuel cell (12′) in a passive state.