摘要:
The present invention is to provide a TiO2—SiO2 glass having suitable thermal expansion properties as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a temperature, at which a coefficient of thermal expansion is 0 ppb/° C., falling within the range of 23±4° C. and a temperature width, in which a coefficient of thermal expansion is 0±5 ppb/° C., of 5° C. or more.
摘要:
The aim of the invention is to improve a generally known method for producing quartz glass doped with fluorine, wherein SiO2 particles are formed in the presence of fluorine by means of a plasma deposition process, deposited in layers on an outer envelope of a cylindrical quartz glass substrate body rotating about its longitudinal axis, and vitrified to form a layer of quartz glass with a fluorine content of at least 1.5 wt. %, in such a way that a quartz glass semifinished product with a high fluorine content, characterised by a high basic transmission in the UV wavelength range, is obtained. To this end, the substrate body has at least one reservoir layer of quartz glass at least in the region of the outer envelope thereof, having a minimum hydroxyl group content of 200 wt. ppm and/or a minimum hydrogen content of 1×1017 molecules/cm3, and the substrate body is either fully or partially removed following the deposition of the quartz glass layer doped with fluorine.
摘要翻译:本发明的目的是改进用于生产掺杂有氟的石英玻璃的通常已知的方法,其中通过等离子体沉积工艺在氟存在下形成SiO 2颗粒,其沉积在圆柱形石英玻璃的外包层上 衬底体围绕其纵向轴线旋转,并且玻璃化以形成氟含量为至少1.5重量%的石英玻璃层。 以这样的方式获得具有高氟含量的石英玻璃半成品,其特征在于在UV波长范围内具有高的基本透射率。 为此,衬底主体至少在其外壳的区域中具有至少一个石英玻璃储存层,其最小羟基含量为200重量%。 ppm和/或1×1017分子/ cm 3的最小氢含量,并且在掺杂了氟的石英玻璃层沉积之后,基板主体被完全或部分地去除。
摘要:
The present invention relates to an optical waveguide manufacturing method, which excels in mass productivity of a planar optical waveguide. In an aggregating step, plural members (20), which have a rod (21) or pipe (22) shape respectively, are arranged and bundled so as to constitute a substantially similar figure to at least a part of a desired waveguide pattern on a cross-section perpendicular to the longitudinal direction of the members (20). The plural members (20) bundled in the aggregating step are, after being softened by heating, elongated in a longitudinal direction thereof in an elongating step, whereby an elongated body is formed. The elongated body formed in the elongating step is cut along a plane perpendicular to the longitudinal direction of the elongated body in a cutting step. By these steps, a planar optical waveguide, on which a waveguide pattern based on a micro-structure is formed, is manufactured.
摘要:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
摘要:
A core part of a multimode optical fiber including the core part and a cladding part has a structure composed of a plurality of concentric layers in which a refractive index is decreased stepwise from a first core layer as an innermost layer to a third core layer as an outermost layer. The structure having the plurality of layers is formed by adjusting a quantity of addition of fluorine to silica glass. Fluorine is added to the cladding part so that a refractive index is lower than that of the third core layer as the outermost layer of the core part.
摘要:
The present invention relates to an apparatus for carrying out a plasma chemical vapor deposition process by which one or more layers of doped or undoped silica can be deposited on the interior of an elongated glass substrate tube. The present invention further relates to a method for manufacturing an optical fiber using such an apparatus.
摘要:
The present invention relates to an optical fiber preform fabricating method that makes it possible to implement a reduction in iron impurities at a low cost. The optical fiber preform fabricating method comprises a glass synthesis step for forming a glass region constituting at least a part of the core area of the optical fiber. The glass synthesis step includes a deposition step of depositing glass particles containing the Al-element inside the glass pipe by means of chemical vapor deposition, and a consolidation step of obtaining a transparent glass body from the glass soot body thus obtained. In other words, the deposition step synthesizes glass particles on the inside wall of a glass pipe by feeding raw material gas, in which the content ratio (O/Al) of the O-element and Al-element is 20 or less, into the glass pipe. Furthermore, the consolidation step obtains a transparent glass body from the glass soot body by heating the glass soot body. The transparent glass body that is formed in the consolidation step constitutes part of the core region.
摘要:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
摘要:
Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 50 and 500 ppm by weight, said core further comprising chlorine and fluorine, wherein the average concentration of fluorine in said core is greater than the average concentration of alkali metal oxide in said core and the average concentration of chlorine in said core is greater than the average concentration of alkali metal oxide in said core; and a silica-based cladding surrounding and directly adjacent the core. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained.
摘要:
An optical fiber made of silica-based material includes a core and a cladding formed around the core. The core is doped with germanium dioxide, which increases refractive index and decreases acoustic-wave velocity, and aluminum oxide, which increases both refractive index and acoustic-wave velocity, satisfying—2.814+0.594×W1≦W2≦54.100+0.218×W1, W1+W2≦60, and W2≧56.63−2.04×W1, where W1 is doping amount of germanium dioxide in weight percentage, which is larger than 4.74, and W2 is doping amount of aluminum oxide in weight percentage. A nonlinear coefficient of the optical fiber is equal to or larger than 2.6×10−9W−1.