Abstract:
A secure remote operation and actuation system is described herein. The system may comprise one or more unmanned aerial vehicles, a remote input receptor, and a network. In some embodiments, the unmanned aerial vehicles form a collective remote unmanned aerial vehicle. The remote input receptor may comprise a user interface for receiving user inputs from a user. The network may comprise a combination of computer systems interconnected by telecommunications equipment or cables allowing information to be exchanged. The network may also comprise a network device for obtaining the user inputs from the remote input receptor. One or more acceptable inputs may be stored on the network. In the present invention, the network device obtains the user inputs from the remote input receptor while the user is using the user interface and then the network compares the user inputs to the acceptable inputs.
Abstract:
Systems and methods for powering an airborne transport vehicle from a ground power supply are provided. One system is a hovercraft power system having a ground power supply coupled with at least one on-board DC-DC power converter, wherein the on-board DC-DC power converter is positioned on-board a hovercraft. The hovercraft power system further includes a power cord tethered to the hovercraft, wherein the power cord is capable of delivering at least 100 kilowatts (kW) of power from the ground power supply to the hovercraft. The hovercraft power system also includes a tether dispenser configured to dispense or retract the power cord tethered to the hovercraft.
Abstract:
This disclosure describes a system and method for operating an automated aerial vehicle wherein the battery life may be extended by performing one or more electricity generation procedures on the way to a destination (e.g., a delivery location for an item). In various implementations, the electricity generation procedure may include utilizing an airflow to rotate one or more of the propellers of the automated aerial vehicle so that the associated propeller motors will generate electricity (e.g., which can be utilized to recharge the battery, power one or more sensors of the automated aerial vehicle, etc.). In various implementations, the airflow may consist of a wind, or may be created by the kinetic energy of the automated aerial vehicle as it moves through the air (e.g., as part of a normal flight path and/or as part of an aerial maneuver).
Abstract:
Disclosed is a system and method for facilitating testing of a plurality of devices using a drone. At first, a locating module locates position of the drone relative to the plurality of devices. Further, a receiving module receives an image, of a device of the plurality of devices, from image capturing unit of the drone. Then, a comparing module compares the image with a reference image corresponding to the device. Based on the comparison, a determining module determines an action to be performed for testing the device. Further, a facilitating module facilitates the testing by enabling a snout associated with the drone to perform the action on the device.
Abstract:
An electrically powered of the vertical takeoff and landing aircraft configured for use with a tether station having a continuous power source is provided including at least one rotor system. The vertical takeoff and landing aircraft additionally has an autonomous flight control system coupled to the continuous power source. The autonomous flight control system is configured to operate an electrical motor coupled to the at least one rotor system such that the vertical takeoff and landing aircraft continuously hovers above the tether station in a relative position. The vertical takeoff and landing aircraft also includes a detection system for detecting objects at a distance from the vertical takeoff and landing aircraft.
Abstract:
Techniques for an unmanned aerial system that embeds data into power sent from a control system to one or more motors so that one or more wires between the control system and the one or more motors can be used to transmit power and data are described. As one example, an unmanned aerial system includes a sensor, a control system comprising alternating current power generation circuitry and first embedded data communication circuitry, and a motor system coupled to the control system via a set of one or more wires and comprising at least one motor to provide propulsion from power generated by the alternating current power generation circuitry and second embedded data communication circuitry to embed data from the sensor into the power generated by the alternating current power generation circuitry to produce modulated power, wherein the first embedded data communication circuitry is to extract the data from the modulated power. The unmanned aerial system may include a second set of one or more wires dedicated to send the data from the sensor to the control system.
Abstract:
A manned or unmanned aircraft has a main body with a circular shape and a circular outer periphery. One or more rotor blades extend substantially horizontally outward from the main body at or about the circular outer periphery. In addition, one or more counter-rotation blades extend substantially horizontally outward from said main body at or about the circular outer periphery, but vertically offset from the main rotor blades.
Abstract:
Management of available energy among multiple drones is provided by identifying tasks to be completed by the multiple drones, and determining energy requirements of one or more drones of the multiple drones to facilitate completing one or more tasks of the tasks to be completed by the multiple drones. Further, the approach includes identifying an energy sharing approach for completion of the task(s) by the drone(s) where one or more other drones of the multiple drones transfer energy in operation to the drone(s) to facilitate completion of the task(s). In operation, the multiple drones may be detachably coupled, and the approach may include implementing the energy sharing approach by transferring energy from the other drone(s) to the drone(s) to facilitate completion of the task(s), for instance, prior to decoupling of the other drone(s) from the drone(s).
Abstract:
The invention relates, among others, to an aircraft (10) comprising at least one electromotive drive (11a, 11b) and a controller (12) with which the aircraft can permanently maintain a set flight position, wherein the aircraft can be connected to the ground station (19) via a cable arrangement (16), and wherein the cable arrangement comprises at least two electric conductors (17a, 17b) for supplying voltage to the drive, as well as a fiber-optic cable (18) for the communication of data and/or signals.
Abstract:
The present invention discloses an unmanned aerial vehicle and a battery thereof. The battery includes a battery body and a shell disposed on one end of the battery body. The shell has a clamp button disposed on the side opposite the unmanned aerial vehicle. One end of the clamp button is fixed on the shell and the other is used for detachably connecting with the unmanned aerial vehicle. The clamp button makes the battery detachably connect with the main body of the unmanned aerial vehicle be possible and it is very convenient for changing the battery.