Abstract:
Golf club heads are releasably engaged with shafts so that the club heads and shafts can be readily interchanged and/or so that the shaft position with respect to the club head can be readily changed. Assemblies for connecting the club head and shaft may include: (a) a shaft engaging member including a rotation-inhibiting structure; (b) a club head engaging member including a shaft-receiving chamber and a retaining structure for engaging the rotation-inhibiting structure; and (c) a securing system for releasably securing the shaft engaging member with respect to the club head engaging member. The club head and shaft may be changed by releasing the securing system and exchanging the original parts with different parts. Furthermore, the shaft may be bent or otherwise extend at an angle from the shaft engaging member so as to allow adjustment of the shaft position with respect to the club head.
Abstract:
A golf club incorporating a stress reducing feature and a shaft connection system socket. The location and size of the stress reducing feature and the shaft connection system socket, and their relationship to one another, selectively increase deflection of the face and provide stability of the shaft connection system.
Abstract:
A golf club may include a front surface, a rear surface having a recess, and an insert at least partially disposed in the recess. The insert may comprise a durometer hardness of less than about 95 Shore A and a cavity having a reinforcement member disposed therein. Preferably, the durometer hardness of the reinforcement member is also less than about 95 Shore A. The insert may further comprise an anterior perimetric boundary having a first length and a posterior perimetric boundary having a second length. The ratio of the first length to the second length may be less than 1 and greater than 0.5. In one example, the insert may have a triangular front profile and a triangular side profile.
Abstract:
A club 2 includes a head 4, a shaft 6 and a grip 8. A club length L1 is 45 inches or greater and 48 inches or less. A ratio (Wh/Wc) of a head weight Wh to a club weight Wc is equal to or greater than 0.71. A moment of inertia Ix about an axis of a swing is equal to or less than 6.90×103 (kg·cm2). However, when the club weight is defined as Wc (kg); an axial-directional distance between a grip end and a center of gravity of the club is defined as Lc (cm); and a moment of inertia about the center of gravity of the club is defined as Ic (kg·cm2), the moment of inertia Ix (kg·cm2) is calculated by the following formula (1). Ix=Wc×(Lc+60)2+Ic (1)
Abstract:
Embodiments of golf club weight attachment mechanisms are described herein. In some embodiments, a golf club head comprises a head body with an interior cavity, a shell portion, and a bracket with a weight member coupled to the bracket. In one embodiment, the bracket and the weight member can be configured to be fully contained within the interior cavity. Other examples and related methods are also described herein.
Abstract:
A golf club includes a shaft; a head mounted to the tip end of the shaft; a grip mounted to the butt end of the shaft; a first vibration damping member arranged on the head side of the shaft; and a second vibration damping member arranged on the grip side of the shaft. The first range of the shaft in which the first vibration damping member is arranged includes a position of the shaft corresponding to the top end of the hosel of the head and has a length of 25 to 250 mm in the longitudinal direction of the shaft. The second range of the shaft in which the second vibration damping member is arranged includes a position of the shaft corresponding to the tip end of the grip and has a length of 150 to 250 mm in the longitudinal direction of the shaft.
Abstract:
A shaft 6 includes full length layers provided wholly in a longitudinal direction of the shaft, and a tip end partial layer provided on a tip part of the shaft. The full length layers include a bias layer and a straight layer. The tip end partial layer includes an inner glass fiber reinforced layer. When a full length of the shaft is defined as Ls, and a distance between a tip end of the shaft and a center of gravity G of the shaft is defined as Lg, a ratio (Lg/Ls) is equal to or greater than 0.52 and equal to or less than 0.65. A weight of the shaft is equal to or less than 65 g. Preferably, the inner glass fiber reinforced layer is positioned inside the bias layer.
Abstract:
A golf club head including a club face defined by a toe end, a heel end, a top rail and a sole. The golf club head including a plurality of grooves disposed on the club face between the top rail and the sole. Each groove extends between the toe end and the heel end. Depths of the grooves vary in a direction extending between the top rail and the sole and in a direction extending between the heel end and the toe end. Widths of each of the plurality of grooves vary in a direction extending between the heel end and the toe end.
Abstract:
A golf club head including a crown, a sole, a hosel, a face, a weight port, an internal cavity, and a stiffening member. The weight port is affixed to the sole. The stiffening member is located in the interior cavity and permanently affixed to the hosel. The stiffening member is also permanently affixed to the sole and the weight port.
Abstract:
A golf club head has a striking face with a plurality of scorelines including a first scoreline and a second scoreline adjacent thereto. The striking face also has a plurality of auxiliary grooves each spaced from the scorelines. In a first imaginary vertical plane, a first path is formed by a first intersection between the first imaginary vertical plane and the striking face, and the auxiliary grooves have a first concentration no less than 0.17 measured between the first and second scorelines. A second imaginary vertical plane is horizontally spaced from the first imaginary plane. A second path is formed in the second imaginary vertical plane by a second intersection between the second imaginary vertical plane and the striking face. The auxiliary grooves in the second imaginary vertical plane have a second concentration that is different from the first concentration measured between the first and second scorelines.