摘要:
A method may include identifying a time window of a procedure. The method may also include obtaining operational information of the time window. The operational information may include a limit of pulse repetition frequency (PRF) acceleration and a plurality of preliminary radio frequency (RF) PRFs. The method may also include determining a plurality of updated RF PRFs by updating the plurality of preliminary RF PRFs. A rate of variation between any two adjacent updated RF PRFs may be less than or equal to the limit of PRF acceleration. The method may also include causing an RF source to generate electromagnetic waves at the plurality of updated RF PRFs in the time window.
摘要:
A method may include identifying a time window of a procedure. The method may also include obtaining operational information of the time window. The operational information may include a limit of pulse repetition frequency (PRF) acceleration and a plurality of preliminary radio frequency (RF) PRFs. The method may also include determining a plurality of updated RF PRFs by updating the plurality of preliminary RF PRFs. A rate of variation between any two adjacent updated RF PRFs may be less than or equal to the limit of PRF acceleration. The method may also include causing an RF source to generate electromagnetic waves at the plurality of updated RF PRFs in the time window.
摘要:
The invention comprises a positively charged particle based cancer therapy system integrated with at least one off-axis imaging system, where elements of the off-axis imaging system and the cancer therapy system are co-positioned/co-rotated with a gantry. The imaging apparatus optionally functions with a tomography system using the positively charged particles of the cancer therapy system for enhanced patient/tumor imaging at and/or prior to a time of treatment.
摘要:
Interference of dose application in scanned ion beam therapy and organ motion, also called interplay effect, may lead to dose deviations at target volumes. Current repainting methods are susceptible to artefacts due to a predominant scanning direction, ranging from fringed field edges to under and overdosed regions (hot and cold spots). To overcome the difficulties inherent in the repainting techniques of conventional proton therapy systems, new random repainting techniques are described herein for mitigating the under-dose and/or over-dose pattern inherent in existing repainting techniques using a random repainting approach that randomly selects spot locations within the target area.
摘要:
The invention comprises a method and apparatus for imaging and treating a tumor of a patient using positively charged particles and X-rays. A mounting rail, supporting a scintillation detection system element and an X-ray detection system element, is alternatingly extended/retracted to position the required detection system element opposite a patient tumor position from an exit nozzle of a beam transport system connected to an accelerator of the positively charged particles, where the positively charged particles are alternatingly used to treat the tumor via irradiation. The mounting rail optionally rotates with rotation of the exit nozzle about the patient, such as with rotation of a support gantry.
摘要:
The invention comprises a method and apparatus for probing a tumor of a patient using positively charged particles, comprising the steps of: (1) sequentially delivering sets of varied and known positively charged particles to a patient; (2) after transmission through the patient, sequentially detecting a residual energy of each of the sets of positively charged particles; and (3) determining a water equivalent thickness of a probed path of the patient using a plot of the detector response as a function of residual energy that is fit with a curve. The analyzer relates a half maximum of the fit curve, such as a Gaussian curve, to the water equivalent thickness of the sampled beam path. Repeated measurements as a function of incident angle and/or position of the incident charged particles allows generation of an image of the sample, such as a computed tomography image.
摘要:
The invention comprises a method and apparatus for directing charged particles into a patient from several directions. A delivery system is described that uses a primary beam line from an accelerator to a path switching magnet used to dynamically direct bunches of the positively charged particles down a selected pathway of a plurality of physically separated beam transport lines to a single patient treatment position, where the selected pathways enter the patient from two or more sides. Optionally, a repositionable treatment nozzle is repositioned to interface with each beam transport line, which allows the charged particle delivery system to use a single scanning capable nozzle in combination with delivery of the charged particles to the two or more sides of the patient to implement a tumor irradiation plan without a necessity of a moveable beamline in, at, or near a treatment room.
摘要:
To overcome the difficulties inherent in conventional proton therapy systems, new techniques are described herein for synchronizing the application of proton radiation with the periodic movement of a target area. In an embodiment, a method is provided that combines multiple rescans of a spot scanning proton beam while monitoring the periodic motion of the target area, and aligning the applications of the proton beam with parameters of the periodic motion. For example, the direction(s) and frequency of the periodic motion may be monitored, and the timing, dose rate, and/or scanning direction and spot sequence of the beam can be adjusted to align with phases in the periodic motion
摘要:
In a particle beam irradiation apparatus that controls a scanning apparatus so that each irradiation position is irradiated with a particle beam a rescan-count number of times by repeating for the rescan-count number of times the irradiation of all irradiation positions in the irradiation target, the irradiation apparatus includes a calculator that receives either one of a rescan count n or a beam intensity J that is a particle beam dose per unit time, to calculate a maximum value of the other satisfying the following conditional expression (P1) for all irradiation positions to present the maximum value to a user. J*ti≦di/n (P1)
摘要:
The invention comprises a patient specific tray insert removably inserted into a tray frame to form a beam control tray assembly, which is removably inserted into a slot of a tray receiver assembly proximate a gantry nozzle of a charged particle cancer treatment system. Optionally, multiple tray inserts, each used to control a different beam state parameter, are inserted into corresponding slots of the tray receiver assembly where the multiple inserts are used to control beam intensity, shape, focus, and/or energy. The beam control tray assembling includes an identifier, such as an electromechanical identifier, of the particular insert type, which is communicated to a main controller, such as via the tray receiver assembly along with slot position and/or patient information.