Abstract:
A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of sweat glands are provided. An exemplary method and system for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the aberrant sweat gland population is located below the skin surface.
Abstract:
Various embodiments provide methods and systems for ultrasound treatment of tissue are provided. Accordingly, a method can include locating an implant in a site in a body, directing a medicant to at least one of the implant and the site, directing ultrasound energy to the site, and accelerating healing of the implant and/or native tissue at the site.
Abstract:
A non-invasive ultra-high frequency ultrasound treatment method and system are provided. An exemplary method and system comprise a high-frequency ultrasound transducer system configured for providing ultrasound treatment to a patient such that the superficial and/or subcutaneous regions of the patient can be treated. An exemplary high-frequency ultrasound transducer system comprises a control system and a transducer configured to provide treatment to the superficial and/or subcutaneous regions of interest. The high-frequency ultrasound transducer may be configured to operate at higher frequencies and controlled power levels to provide treatment to the superficial and/or subcutaneous regions of interest. For example, higher frequencies within the range from approximately 20 MHz to 500 MHz or more may be utilized.
Abstract:
Methods and systems for treating skin, such as stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis or a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth with a conformal selective deposition of ultrasound energy without damaging an intervening tissue. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
Abstract:
A non-invasive ultra-high frequency ultrasound treatment method and system are provided. An exemplary method and system comprise a high-frequency ultrasound transducer system configured for providing ultrasound treatment to a patient such that the superficial and/or subcutaneous regions of the patient can be treated. An exemplary high-frequency ultrasound transducer system comprises a control system and a transducer configured to provide treatment to the superficial and/or subcutaneous regions of interest. The high-frequency ultrasound transducer may be configured to operate at higher frequencies and controlled power levels to provide treatment to the superficial and/or subcutaneous regions of interest. For example, higher frequencies within the range from approximately 20 MHz to 500 MHz or more may be utilized.
Abstract:
A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.
Abstract:
A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of sweat glands are provided. An exemplary method and system for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the aberrant sweat gland population is located below the skin surface.
Abstract:
Embodiments of a dermatological cosmetic treatment and imaging system and method can include use of a hand wand and a removable transducer module having an ultrasound transducer. The system can include a control module that is coupled to the hand wand and has a graphical user interface for controlling the removable transducer module, and an interface coupling the hand wand to the control module. In some embodiments, the cosmetic treatment system may be used in cosmetic procedures on at least a portion of a face, head, neck, body, and/or other part of a patient for a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and/or an acne treatment.
Abstract:
This disclosure provides systems and methods for non-invasive treatment to a region of interest with improved efficiency. The systems and methods can include a treatment device having an energy source and a rolling member. The rolling member can include a wall disposed between the energy source and the region of interest. Treatment can be provided at a first location, followed by moving the treatment device, then energy transmission can be terminated if coupling between the energy source and the region of interest is interrupted or treatment can be provided at a second location if the coupling between the energy source and the region of interest is uninterrupted.
Abstract:
A method and system uniquely capable of generating thermal bubbles for improved ultrasound imaging and therapy. Several embodiments of the method and system contemplates the use of unfocused, focused, or defocused acoustic energy at variable spatial and/or temporal energy settings, in the range of about 1 kHz-100 MHz, and at variable tissue depths. The unique ability to customize acoustic energy output and target a particular region of interest makes possible highly accurate and precise thermal bubble formation. In an embodiment, the energy is acoustic energy. In other embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents (including monopolar and bipolar radio-frequency current). In an embodiment, the energy is various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling.