Abstract:
The embodiments herein provide a method and system for creating a secure connection for a User Equipment (UE) in a wireless network including a UE, carrier aggregated with at least one first serving frequency served by a first eNB and at least one second serving frequency served by a second eNB. A unique non-repetitive security base key associated with the second eNB is generated using a freshness parameter and security key associated with the first eNB. The use of a different freshness parameter for each security base key derivation avoids key stream repetition. Further, a user plane encryption key is derived based on the generated unique non-repetitive security base key associated with the second eNB for encrypting data transfer over at least one data radio bearer.
Abstract:
The embodiments herein provide a method and system for creating a secure connection for a User Equipment (UE) in a wireless network including a UE, carrier aggregated with at least one first serving frequency served by a first eNB and at least one second serving frequency served by a second eNB. A unique non-repetitive security base key associated with the second eNB is generated using a freshness parameter and security key associated with the first eNB. The use of a different freshness parameter for each security base key derivation avoids key stream repetition. Further, a user plane encryption key is derived based on the generated unique non-repetitive security base key associated with the second eNB for encrypting data transfer over at least one data radio bearer.
Abstract:
Embodiments herein disclose a method for identifying a unicast Device to Device (D2D) communication. Further, the method includes generating, by a source User Equipment (UE), a D2D Media Access Control (MAC) Protocol Data Unit (PDU) comprising a unicast parameter. Further, the method includes transmitting, by the source UE, the D2D MAC PDU to the destination UE. Further, the method includes receiving, by the destination UE, the D2D MAC PDU. Further, the method includes detecting, by the destination UE, one of unicast parameters and groupcast parameters of the D2D MAC PDU. Furthermore, the method includes identifying, by the UE, the D2D MAC PDU is for one of the unicast D2D communication when the unicast parameters are detected, and the groupcast D2D communication when the groupcast parameters are detected.
Abstract:
A method for managing privacy of a user in a network includes generating, by a user equipment (UE), a Locally Administered Randomized WLAN MAC Address (LRA), wherein at least one portion of the LRA is randomly generated based on at least one of a network temporary identity and a network parameter. Further, the method includes transmitting, by the UE, the generated LRA to a network node. A User equipment (UE) for managing privacy of a user in a network includes a memory, a processor, coupled to the memory, an LRA generator, coupled to the processor, configured to generate an LRA, wherein at least one portion of the LRA is randomly generated based on at least one of a network temporary identity or a network parameter, and a transceiver, coupled to the processor, configured to transmit the LRA to a network node.
Abstract:
Embodiments herein provide a method for identity management across multiple planes. The method includes receiving, by a MCPTT server, a first request message to establish a call between a first MCPTT client and the one or more second MCPTT client from a signaling plane entity. The first request message includes an application plane identity of the one or more second MCPTT client. Further, the method includes translating, at the MCPTT server, the application plane identity of the one or more second MCPTT client to a signaling plane identity of the one or more second MCPTT client. Furthermore, the method includes sending, by the MCPTT server, the one or more second request message including the signaling plane identity of the one or more second MCPTT client to the second MCPTT client for establishing the call via the signaling plane entity.
Abstract:
A method and system for delivering multimedia content to at least one User Equipment (UE), using a Multimedia Broadcast Multicast Services (MBMS) in a wireless cellular network is provided. The method includes initiating a MBMS session for delivering the multimedia content cached at a local cache server of at least one wireless cellular network node, by at least one cached content manager, defining new control interfaces for communicating between the at least one cached content manager and at least one of: a Multi-Cell Multicast Coordination Entity (MCE) and a MBMS Gateway (MBMS GW), sending a notification on a new control interface to the MCE for establishing the MBMS session, and signaling at least one Radio Access Network (RAN) node to deliver the multimedia content using the established MBMS session by the MCE.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Accordingly, the embodiments herein provide a method for binding a plurality of subscriber identity modules (SIMs) (150) associated with a user equipment (UE) (100) to optimize network resources in a wireless network.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments herein provide a method for determining whether a base station is genuine or rouge in a wireless network. If a received authentication key matches with the authentication key generated in the UE, the method includes identifying a base station as genuine base station and carrying out a normal procedure. If the received authentication key does not match with the generated authentication key, the method includes identifying the base station as a rouge base station. The authentication key can be a digital signature (DS), a Message Authentication Code-Integrity (MAC-I), and a hash of MIB/SIBs including PCI.
Abstract:
Methods and systems for managing AMF re-allocation is provided. The method for managing AMF reallocation during UE registration procedure with a 5G network comprises: determining if the first AMF may send a routing assistance information to the UE, on the first AMF determining that the first AMF is not a right AMF to serve the UE; sending a routing assistance information, to the UE, as response to a first registration request message; receiving routing assistance information from the first AMF; sending a second registration request message to a 5G RAN of the 5G network comprising a portion of content included in the routing assistance information; and routing the second registration request message to a second AMF of the 5G network, wherein the second AMF is determined by the 5G RAN based on the portion of content included in the routing assistance information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution. Methods and systems for mitigating Denial of Service (DOS) attacks in wireless networks, by performing admission control by verifying a User Equipment's (UE's) registration request via a Closed Access Group (CAG) cell without performing a primary authentication are provided. Embodiments herein disclose methods and system for verifying permissions of the UE to access a CAG cell based on the UE's Subscription identifier, before performing the primary authentication. The method for mitigating DOS attacks in wireless networks includes requesting a public land mobile network for accessing a non-public network (NPN) through a CAG cell, verifying the permissions of a UE to access the requested NPN through the CAG cell, and performing a primary authentication.