Abstract:
A display device includes a plurality of pixel areas and a thin film transistor disposed on a substrate. A first light blocking member is disposed on the thin film transistor, and a contact hole is disposed in the first light blocking member to expose a portion of the thin film transistor. A pixel electrode is disposed on the first light blocking member, and connected with the thin film transistor through the contact hole. A second light blocking member is disposed on the pixel electrode overlapping with the contact hole. A roof layer is disposed spaced apart from the pixel electrode with a microcavity interposed therebetween. An injection hole is disposed below the roof layer to expose a portion of the microcavity, and a liquid crystal layer is disposed in the microcavity. An encapsulation layer is disposed on the roof layer covering the injection hole so as to seal the microcavity.
Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
A manufacturing method of a liquid crystal display includes forming a sacrificial layer on a liquid crystal panel, forming an etch stop layer on the sacrificial layer, forming a photo resist pattern on the etch stop layer, completing the etch stop layer using the photo resist pattern as a mask, ashing the photo resist pattern and the sacrificial layer by using the completed etch stop layer as a mask, forming a microcavity by removing a portion of the sacrificial layer and forming a liquid crystal layer in the microcavity.
Abstract:
The present disclosure relates to a display device. The display device includes a display panel, data lines, a constant voltage line, a feedback line, and a display driver. The display panel includes pixels. The data lines transfer data voltages to the pixels. The constant voltage line transfers a constant voltage to the pixels. The feedback line is coupled to the constant voltage line. The display driver is configured to sense a change amount of the constant voltage through the feedback line, generate compensated image data by compensating image data according to the sensed change amount of the constant voltage, and provide the data voltages corresponding to the compensated image data to the pixels.
Abstract:
A display device includes a display including scan lines, data lines, light emission control lines, and pixels connected thereto, a scan driver configured to sequentially provide scan signals to the scan lines, a data driver configured to provide data signals to the data lines, a light emitting driver configured to provide light emission control signals to the light emission control lines based on a light emission clock signal having pulses, and a timing controller configured to provide the light emission clock signal to the light emitting driver, to output the pulses of the light emission clock signal during a frame in a first mode, to mask at least one pulse of the pulses during a first period of the frame in a second mode, and to output at least another pulse of the pulses during a second period after the first period.
Abstract:
A driving device of a display apparatus includes: a gate driver, a gate on voltage modulator, and a signal controller. The gate driver includes a plurality of gate driving circuits, each of the gate driving circuits being configured to: generate a gate signal according to a gate control signal, and apply the gate signal to at least one gate line. The gate on voltage modulator is configured to: modulate a gate on voltage according to a modulation control signal, and generate a first modulated gate on voltage. The signal controller is configured to generate the modulation control signal and the gate control signal. At least one of the plurality of gate driving circuits includes an amplifier configured to: receive the first modulated gate on voltage, and output a second modulated gate on voltage including substantially the same waveform as the first modulated gate on voltage.
Abstract:
A display device and a method of manufacturing the display device improve reliability by preventing contact between a color filter, a light blocking member and a liquid crystal layer. The display device includes: a substrate including pixel areas; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed in the pixel areas; a roof layer formed on the pixel electrode; microcavities interposed between the pixel electrode and the roof layer; an injection hole formed in the roof layer, the injection hole configured to expose at least a portion of the microcavities; a liquid crystal layer filled in at least one of the microcavities; an encapsulation layer formed on the roof layer, the encapsulation layer configured to cover the injection hole and to seal the microcavities; and an organic layer formed on the encapsulation layer.
Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
A liquid crystal display includes: an insulation substrate; a microcavity layer disposed on the insulation substrate and having a reversed taper side wall; a pixel electrode disposed in the microcavity layer on the insulation substrate; a liquid crystal layer disposed in the microcavity layer; and a common electrode which covers the liquid crystal layer.
Abstract:
A driving device of a display apparatus includes: a gate driver, a gate on voltage modulator, and a signal controller. The gate driver includes a plurality of gate driving circuits, each of the gate driving circuits being configured to: generate a gate signal according to a gate control signal, and apply the gate signal to at least one gate line. The gate on voltage modulator is configured to: modulate a gate on voltage according to a modulation control signal, and generate a first modulated gate on voltage. The signal controller is configured to generate the modulation control signal and the gate control signal. At least one of the plurality of gate driving circuits includes an amplifier configured to: receive the first modulated gate on voltage, and output a second modulated gate on voltage including substantially the same waveform as the first modulated gate on voltage.