Abstract:
A display device includes: first and second display panels adjacent to each other along one direction, wherein: each of the first and second display panels includes a substrate, and a display portion on the substrate and includes a plurality of pixels including a pixel circuit layer on the substrate, at least one transistor, a display element layer on the pixel circuit layer, and at least one light emitting element emitting light; the substrate of the first display panel and the substrate of the second display panel are engaged with each other in a plan view and a cross-sectional view; the display portion of the first display panel and the display portion of the second display panel are engaged with each other in a plan view and a cross-sectional view; and a boundary between the display portion of the first display panel and the display portion of the second display panel.
Abstract:
A display device includes a display including scan lines, data lines, light emission control lines, and pixels connected thereto, a scan driver configured to sequentially provide scan signals to the scan lines, a data driver configured to provide data signals to the data lines, a light emitting driver configured to provide light emission control signals to the light emission control lines based on a light emission clock signal having pulses, and a timing controller configured to provide the light emission clock signal to the light emitting driver, to output the pulses of the light emission clock signal during a frame in a first mode, to mask at least one pulse of the pulses during a first period of the frame in a second mode, and to output at least another pulse of the pulses during a second period after the first period.
Abstract:
A display device and a method of driving same in which the display device includes: a display panel including first and second display areas; a processor to generate first image data corresponding to the first and second display areas in a first mode, and generate second image data corresponding to the first display area in a second mode; and a display driver to control the display panel to display an image corresponding to the first image data in the first and second display areas according to a first frame period in the first mode, and to display an image corresponding to the second image data in the first display area according to a second frame period in the second mode. The second frame period is shorter than the first frame period.
Abstract:
A display panel includes: a plurality of pixels connected to a plurality of data lines and a peripheral area at the periphery of the display area; a first channel group including a plurality of first shared channels respectively connected to shared data lines among the data lines; a second channel group including a plurality of second shared channels respectively connected to the shared data lines; a first source driver connected to the first channel group, the first source driver being configured to supply data signals to the shared data lines through the first channel group; and a second source driver connected to the second channel group, the second source driver being configured to supply the data signals to the shared data lines through the second channel group, wherein the first channel group and the second channel group forms a pair to be commonly connected the shared data lines.
Abstract:
A display device including: a substrate including first, second, and third pixel areas; a plurality of pixel electrodes positioned on the substrate within each of the first, second, and third pixel areas; and a plurality of roof layers each facing a respective one of the pixel electrodes, ones of the roof layers positioned to be spaced apart from respective ones of the pixel electrodes with a plurality of microcavities therebetween, the microcavities positioned to correspond to each of the first, second, and third pixel areas. The roof layer includes first and second color filter layers positioned corresponding to the first pixel area and the second pixel area and a third color filter layer positioned below the liquid crystal layer, and a cell gap of the microcavity corresponding to the third pixel area is smaller than cell gaps of the microcavities corresponding to the first and second pixel areas.
Abstract:
A display device includes a substrate, a thin film transistor, a pixel electrode, a roof layer, a plurality of microcavities, a groove, liquid crystal molecules, and an encapsulation layer. The thin film transistor is disposed on the substrate. The pixel electrode is connected to the thin film transistor. The roof layer is disposed on the pixel electrode so as to be spaced apart from the pixel electrode while interposing the plurality of microcavities. The groove is formed in a first surface of the roof layer. The liquid crystal molecules are disposed in the microcavities. The encapsulation layer is disposed on the roof layer and seals the liquid crystal molecules in the microcavities.
Abstract:
A device for monitoring a liquid crystal display includes: a substrate including a display region and a non-display region disposed at an edge of the display region. The display region includes: a thin film transistor disposed on the substrate, a pixel electrode disposed on the substrate and connected to the thin film transistor, a first sacrificial layer disposed on the pixel electrode, and a roof layer disposed on the sacrificial layer. The non-display region includes: a second sacrificial layer disposed on the substrate, and the roof layer disposed on the second sacrificial layer. The first sacrificial layer has a first longitudinal dimension and a first cross-sectional area, and the second sacrificial layer has a second longitudinal dimension and a second cross-sectional area. The first cross-sectional area is the same as the second cross-sectional area. The second longitudinal dimension is greater than the first longitudinal dimension.
Abstract:
A display device includes: a substrate, on which pixel areas arranged substantially in a matrix form having pixel rows and pixel columns are defined; a thin film transistor disposed on the substrate; a pixel electrode disposed in the pixel areas and connected to the thin film transistor; common electrodes disposed on the pixel electrode and spaced apart from the pixel electrode, where a microcavity is defined between the pixel electrode and the common electrodes; a roof layer disposed on the common electrodes, where a liquid crystal injection hole is defined through the common electrodes and the roof layer and exposes the microcavity; a liquid crystal layer disposed in the microcavity; and an encapsulation layer disposed on the roof layer, where the encapsulation layer covers the liquid crystal injection hole and seals the microcavity, where the common electrodes in the pixel rows are connected to each other.
Abstract:
A display device includes a substrate, a thin film transistor disposed on the substrate, a pixel electrode connected to the thin film transistor, a common electrode disposed opposite to the pixel electrode and spaced apart from the pixel electrode, where a microcavity is defined between the common electrode and the pixel electrode, and a cutout is defined in the common electrode, an insulating layer disposed on the common electrode, a roof layer disposed on the insulating layer, where a liquid crystal injection hole is defined through the common electrode and the roof layer such that the common electrode and the roof layer expose a portion of the microcavity, a liquid crystal layer disposed in the microcavity, and an encapsulation layer disposed on the roof layer, where the encapsulation layer covers the liquid crystal injection hole, and seals the microcavity.