Abstract:
An organic light emitting diode (OLED) display device includes: a display panel including a first through (2M)-th row pixel blocks; a data driver including a first data driving unit to provide N odd row data signals to (2K−1)-th row pixel blocks and a second data driving unit to provide N even row data signals to (2K)-th row pixel blocks; a scan driver including a first scan driving unit configured to provide (2K−1)-th scan signals to (2K−1)-th row pixel blocks and a second scan driving unit configured to provide (2K)-th scan signals to (2K)-th row pixel blocks. The first frame period includes an activation period and a vertical blank period. The first scan driving unit is configured to activate the (2K−1)-th scan signals sequentially in pulse form in an activation period.
Abstract:
A display device which includes a substrate having a pixel unit that receiving first and second voltages is disclosed. In one aspect, the first and second power lines are coupled to the first and second voltages, and are supplied to the pixel unit via first and second power pads. In some aspects, the first and second power pads are alternately disposed while being spaced apart from each other in at least a portion of the peripheral area, and the second power pads are disposed in the space between the respective first power pads.
Abstract:
An organic light-emitting diode (OLED) display and a method of driving the same are disclosed. In one aspect, the method includes displaying an image on a display panel based at least in part on a first power voltage provided through a first power line and a second power voltage having a first voltage level provided through a second power line. The display panel is configured to receive the first and second power voltages from a power supply unit. The method also includes providing the second power voltage having a second voltage level higher than the first voltage level to the display panel through the second power line, detecting a second power line current flowing through the second power line when the second power voltage has the second voltage level, and turning off the power supply unit when the second power line current is detected.
Abstract:
A gate drive circuit in which multiple stages are connected together one after each other. An n-th stage includes a pull-up part, a carry part, a pull-down part, a switching part, a first maintaining part and a second maintaining part. The pull-up part outputs a high voltage of a first clock signal. The carry part outputs a high voltage of the first clock signal. The pull-down part pulls-down the n-th gate signal into a first low voltage. The switching part outputs a first signal synchronized with the first clock signal during an interval other than a high voltage output interval of the n-th carry signal. The first maintaining part maintains the n-th gate signal at the first low voltage in response to the first signal. The second maintaining part maintains the n-th gate signal at the first low voltage in response to a second signal.
Abstract:
In a method of driving an organic light emitting display device, the organic light emitting display device includes: a plurality of data lines; a plurality of scan lines; and a plurality of pixels coupled to the data lines and the scan lines, the method includes: applying dummy-data signals and pre-data signals to the pixels from respective ones of the scan lines during a non-emission period; and non-sequentially applying scan signals and data signals to the pixels from the respective ones of the scan lines during an emission period, wherein the data signals include data information corresponding to respective subfields in a unit time.
Abstract:
An organic light emitting display apparatus includes: a plurality of pixels, each of the pixels including a light emitting device and a driving transistor configured to supply a driving current to the light emitting device based on a scan signal and a data signal; and a plurality of power lines configured to transfer a power voltage supplied from a global power line to the driving transistor of each of the pixels, wherein a level of a gate voltage of the driving transistor when the light emitting device emits light is determined by a distance between a corresponding one of the pixels and the global power line.
Abstract:
Provided is an organic light emitting display device including: a data voltage controller configured to calculate power consumption according to input image data, and to output a voltage control signal corresponding to the calculated power consumption; a data voltage generator configured to regulate and output at least one of first and second voltages corresponding to the voltage control signal; a data driver configured to generate a data signal according to the input image data and at least one of the first voltage or the second voltage, and to output the data signal; and a plurality of pixels configured to selectively emit light corresponding to the data signal.
Abstract:
An organic light-emitting display apparatus for forming a frame by utilizing a plurality of subfields to display gradation. The organic light-emitting display apparatus includes a light-emitting pixel on a display area, a dummy pixel on a dummy area adjacent to the display area, and a repair line coupled to the dummy pixel. The light-emitting pixel is configured to emit light according to a logic level of a data signal applied during each of the subfields, and to adjust an emission time. The repair line is configured to couple the dummy pixel to a light-emitting element when the light-emitting element is separated from the light-emitting pixel, to provide a path to control a light emission of the light-emitting element according to a logic level of a dummy data signal applied to the dummy pixel.